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The level set method was devised by S. Osher and J. A. Sethian QL @38nput.
Phys 79, 12—-49) as a simple and versatile method for computing and analyzing the
motion of an interfac& in two or three dimensiong. bounds a (possibly multiply
connected) regiof. The goal is to compute and analyze the subsequent motion of
" under a velocity fieldi. This velocity can depend on position, time, the geometry
of the interface, and the external physics. The interface is captured for later time as
the zero level set of a smooth (at least Lipschitz continuous) funetignt); i.e.,
I'(t) = {x | p(X, t) = 0}. ¢ is positive insid&?2, negative outsid&, and is zero on
I'(t). Topological merging and breaking are well defined and easily performed. In
this review article we discuss recent variants and extensions, including the motion
of curves in three dimensions, the dynamic surface extension method, fast methods
for steady state problems, diffusion generated motion, and the variational level set
approach. We also give a user’s guide to the level set dictionary and technology
and couple the method to a wide variety of problems involving external physics,
such as compressible and incompressible (possibly reacting) flow, Stefan problems,
kinetic crystal growth, epitaxial growth of thin films, vortex-dominated flows, and
extensions to multiphase motion. We conclude with a discussion of applications to
computer vision and image processing 2001 Academic Press

1. INTRODUCTION

The original idea behind the level set method was a simple one. Given an intErfac
in R" of codimension one, bounding a (perhaps multiply connected) open r&ygiare
wish to analyze and compute its subsequent motion under a velocityfi€his velocity
can depend on position, time, the geometry of the interface (e.g., its normal or its m
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curvature), and the external physics. The idea, as devised in 1987 by S. Osher and .
Sethian [64] is merely to define a smooth (at least Lipschitz continuous) fungtiart),
that represents the interface as the set whéxet) = 0. Herex = x(Xg, ..., Xy) ¢ R™.

The level set functio has the following properties:

p(x,t) >0 forxeQ
p(X,1) <0 forx ¢ Q
p(X,1) =0 forxeaQ =T().

Thus, the interface is to be captured for all later time, by merely locating tH&Befor
which ¢ vanishes. This deceptively trivial statement is of great significance for numeric
computation, primarily because topological changes such as breaking and merging are
defined and performed “without emotional involvement.”

The motion is analyzed by convecting th@alues (levels) with the velocity field This
elementary equation is

dp
— +Vv-Vp=0. 1
T ¢ 1)
Herev is the desired velocity on the interface and is arbitrary elsewhere.

Actually, only the normal component ofis neededyy = v - %, so (1) becomes

dg
— V| =0. 2
ot + un| Vo 2

In Section 3 we give simple and computationally fast prescriptions for reinitializing tf
functiong to be signed distance I at least near the boundary [84], smoothly extending th
velocity fieldvy off of the frontI" [24] and solving Eq. (2) only locally near the interface
thus lowering the complexity of this calculation by an order of magnitude [66]. This mak
the cost of level set methods competitive with that of boundary integral methods, in ca
where the latter are applicable; e.g, see [42].

We emphasize that all this is easy to implement in the presence of boundary singular
and/or topological changes and in two or three dimensions. Moreover, in the case wt
vy is a function of the direction of the unit normal (as in kinetic crystal growth [62] an
uniform density island dynamics [15, 36]), Eq. (2) becomes the first-order Hamilton—Jac
equation

0
8—‘f +Vely(N) =0, 3)

wherey = y(N) is a given function of the normalN = (Vg)/|Vy|.

High-order accurate, essentially nonoscillatory discretizations to general Hamilto
Jacobi equations including (3) were obtained in [64]; see also [43, 65].

Theoretical justification of this method for geometric-based motion came through the tl
ory of viscosity solutions for scalar time-dependent partial differential equations [23, 3
The notion of viscosity solution (see e.g., [8, 27])—which applies to a very wide class
these equations, including those derived from geometric-based motions—enables use
have confidence that their computer simulations give accurate, unique solutions. A part
larly interesting result is in [29], where motion by mean curvature, as defined by Osher :
Sethian in [64], is shown to be essentially the same motion as is obtained from the asy
totics in the phase field reaction diffusion equation. The motion in the level set meth
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involves no superfluous stiffness as is required in phase field models. As was prove
[53], this stiffness due to a singular perturbation involving a small pararaetdflead to
incorrect answers as in [48] without the use of adaptive grids [59]. This is not an issue
the level set approach.

The outline of this paper is as follows: In Section 2 we present recent variants, extensi
and a rather interesting selection of related fast numerical methods. This section m
be skipped at first, especially by newcomers to this subject. Section 3 contains the
definitions and basic level set technology, as well as a few words about the numer
implementation. Section 4 describes applications in which the moving interfaces are co
ed to external physics. Section 5 concerns the variational level set approach with applicat
to multiphase (as opposed to two phase) problems. Section 6 gives a very brief introduc
to the ever-increasing use of level set methods and related methods in image analysis

2. RECENT VARIANTS, EXTENSIONS, AND RELATED FAST METHODS

2.1. Motion of Curves in Three Spatial Dimensions

In this section we discuss several new and related techniques and fast numerical met
for a class of Hamilton—Jacobi equations. These are all relatively recent developments
less experienced readers might skip this section at first.

As mentioned above, the level set method was originally developed for curiRésaind
surfaces irR3. Attempts have been made to modify it to handle objects of high codimensic
Ambrosio and Soner [5] were interested in moving a cuni@dby curvature. They used the
squared distance to the curve as the level set function, thus fixing the curve as the zero
set, and evolved the curve by solving a PDE for the level set function. The main probl
with this approach is that one of the most significant advantages of the level set method
ability to easily handle merging and pinching, does not carry over. A phenomenon cal
“thickening” emerges, where the curve develops an interior.

Attempts have also been made in other directions, e.g., front tracking (see [41]), where
curve is parameterized and then numerically represented by discrete points. The prol
with this approach lies in finding when merging and pinching will occur and in reparamet
izing the curve when they do. The representation we derived in [13] makes use of two le
set functions to model a curve R?, an approach Ambrosio and Soner also suggested but ¢
not pursue because the theoretical aspects became very difficult. In this formulation, a c
is represented by the intersection between the zero level sets of two level set fupctimhs
¥, i.e., wherep =y = 0. From this, many properties of the curve can be derived, such
the tangent vectorg, = V¢ x V¢ /|Vy x V¢|, the curvature vectorgN=VT - T, and
even the torsionfN =—VB - T, whereN andB are the normal and binormal respectively.

Motions of the curve can then be studied under the appropriate system of PDE’s involv
the two level set functions. The velocity can depend on external physics, as well as on
geometry of the curve (as in the standard level set approach). The resulting system of F
for ¢ and¢ is

$=-V-Vé
Yr=—-V-Vy.

A simple example involves moving the curve according to its curvature vectors, for whi
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FIG. 1. Merging and pinching of curves iR® moving by mean curvature. Reprinted from [13].

v = «N. We have shown that this system can also be obtained by applying a gradient des
algorithm minimizing the length of the curve,

L(g. )= /ngw X VI5(1)5(6) dx.

This follows the general procedure derived in [88] for the variational level set method f
codimension one motion, also described in [90]. Numerical simulations performed in [1
on this system of PDEs, and shown in Fig. 1 and 2, show, that merging and pinching off
handled automatically and follow curve-shortening principles.

We repeat the observation made above that makes this sort of motion easily acces
to this vector-valued level set method. Namely, all geometric properties of a Cuwich
is expressed as the zero level set of the vector equation

¢(X,y,z,t) =0
v(x,y,z,t) =0
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FIG. 2. Merging and pinching of curves iR® moving by mean curvature. Reprinted from [13].

can easily be obtained numerically by computing discrete gradients and higher derivat
of the functionsp andv restricted to their common zero level set.

This method will be used to simulate the dynamics of defect lines as they arise in t
eroepitaxy of nonlattice notched materials; see [79, 80] for Lagrangian calculations.

An interesting variant of the level set method for geometry-based motion was int
duced in [53] as diffusion-generated motion, and has now been generalized to forms kn
as convolution-generated motion or threshold dynamics. This method splits the reacti
diffusion approach into two highly simplified steps. Remarkably, a vector-valued genet
ization of this approach, as in the vector-valued level set method described above, give
alternative way [74] to easily compute the motion (and merging) of curves moving norn
to themselves in three dimensions with velocity equal to their curvature.

2.2. Dynamic Surface Extension (DSE)

Another fixed grid method for capturing the motion of self-intersecting interfaces w
obtained in [73]. This is a fixed grid, interface-capturing formulation based on the dynar
surface extension (DSE) method of Steinhetffil. [82]. The latter method was devised as
an alternative to the level set method of Osher and Sethian [64] which is heeded to ev
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wavefronts according to geometric optics. The problem is that the wavefronts in this ¢
are supposed to pass through each other—not merge as in the viscosity solution case.
tracing can be used but the markers tend to diverge, which leads to loss of resolution
aliasing.

The original (ingenious) DSE method was not well suited to certain fundamental se
intersection problems such as formation of swallowtails. In [73] we extended the basic D
scheme to handle this fundamental problem, as well as all other complex intersections

The method is designed to track moving detsf points of arbitrary (perhaps changing)
codimension; moreover there is no concept of “inside” or “outside.” The method is, in sor
sense, dual to the level set method. In the latter, the distance representation is con
tangential to a surface. In the DSE method, the closest point to a surface is constar
directions orthogonal to the surface.

The version of DSE presented in [73] can be described as follows:

For each point irR", set the tracked point TR®) equal to CPx), the closest point (t&)
on the initial surfacd’y. SetN equal to the surface normal at the tracked pointXjPLet
V(TP(x)) be the velocity of the tracked point.

Repeat for all steps:

1. Evolve the tracked point TR)(according to the local dynamics TB( = v(TP(x)).

2. Extend the surface representation by resetting each tracked poi)tecfi@l to the
true closest point CR} on the updated surfadg whererl is defined to be the locus of all
tracked points; i.el’ = {TP(x) | xeR"}.

Replace each(x) by the normal at the updated T™(

This method treats self-intersection by letting moving sets pass through each other. -
is one of its main virtues in the ray-tracing case. However, it has other virtues—namely
generality of the moving set—and curves can end or change dimension.

An important extension is motivated by considering first arrival times. This enables
to easily compute swallowtails, for example, and other singular points. We actually us
combination of distance and direction of motion. One interesting choice arises when nc
values of TPX) are set equal to the “minimizing point”

MP() = min_ Bl(x—y) - N*(y)| + Ix — yII?
y ¢ Interface
for 8 > O (rather than CR{), since a good agreement with the minimal arrival time repre
sentation is found near the surface. Recall that the minimal arrival time at axpisitihe
shortest time it takes a ray emanating from the surface to neddking this idea gives a
very uniform approximation and naturally treats the prototype swallowtail problem.

For the special case of curvature-dependent motion we may use an elegant observ
of DeGiorgi [28]. Namely the vector mean curvature for a surface of arbitrary codimensi
is given bykN = —AV(d?/2) wherex is the local mean curvature adds the distance to
the surface. Using the elementary, but basic fact that

dvd = x — CP(x),

where CPX) is the closest point ts on the surface, we obtain a very simple expression fo
vector mean curvature:

kN = —A(X — CP(x)) = ACP(X).
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Thus motion by a functiofr, of mean curvature for surfaces of arbitrary codimension ca
be achieved by using TP(x)) = ACP(x). Then curvature-dependent velocities are possibl
by using

vV = F(ACP(X)|tpx) - N)N.

Numerical experiments in [73] have validated these algorithms to some degree.

A variety of interesting topics for future research are still open. In particular, adjustme
need to be made if merging is desired. Moreover we can move objects with more comy
topology and geometry, such as surfaces with boundaries (or curves with endpoints), ob
of composite topology (such as a filament attached to a sheet), and surfaces on curves
triple point junctions (see [53, 88] and Section 5 of this paper for successful level-set-ba
and diffusion-generated—based approaches for the codimension one case).

Furtherwork inthe area of curvature-dependent motions is also possible. Computatior
the construction of fast extension methods and localization as in [66] for the level set met
would be of great practical importance. It would be particularly interesting to determine
surfaces fatten (or develop interiors) when mergers occur. See [9] for a detailed discus
of this phenomenon.

Additionally, in[73], we successfully calculated a geometric optics expansion by retaini
the wave-front curvature. Thus this method has the possibility of being quite useful
electromagnetic calculations. We hope to investigate its three-dimensional performe
and include the effects of diffraction.

2.3. A Class of Fast Hamilton—Jacobi Solvers

Another important set of numerical algorithms involves the fast solution of steady (tirr
independent) Hamilton—Jacobi equations. We also seek methods which are faster tha
globally defined schemes originally used to solve Eq. (2). The level set method of Osher
Sethian [64] for time-dependent problems can be localized. This means that the proble

ot+Vv-Vo=0

with T (t) = {x | ¢(x, t) = 0} as the evolving front, can be solved locally nEd&r). Several
algorithms exist for doing this; see [2, 66]. These both repor©&N) algorithm where

N is the total number of grid points on or near the front. However, the algorithm in [6
hasO(N log(N)) complexity because a partial-differential-equation-based reinitializatic
step requires Io(qu—X) ~ log(N) steps to converge (we are grateful to Bjorn Engquist fo
pointing this out). The algorithm in [2] claim®(N) complexity, but this is not borne out
by the numerical evidence presented there.

However, for some special Hamilton—Jacobi equations, there is a fast method wr
formal complexity isSO(N log(N)), but which, in our experience, is around one order o
magnitude faster than these general local methods.

The idea is as follows:

For an equation of the form

H(x, Vi) =0,
givenyr = 0 on a nhoncharacteristic s8t

V- Hyy #0,
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FIG. 3. Three-dimensional etching using a fast algorithm. Reprinted from [61].
we proved in [63] that the level set

Xy =t} =T"(1

is the same as the zero level §&t) of ¢(x, t), fort > 0, whereyp satisfies

This means that the viscosity solutions of both problems have level sets which corresp
to each other. (This was also suggested in the original level set paper of Osher and Se
[64].) Thus, one would like to find'(t), the zero level set af(x, t), asI''(t), thet level set
of ¥ (x).
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FIG. 4. Three-dimensional etching using a fast algorithm. Reprinted from [61].

A canonical example is the eikonal equation
@+ c(X)|Ve| =0, c(x) <0,

which can be replaced by

1
V| = ——— = 0.
VY| X ax) >
So we find first arrival times instead of zero level sets.

In [86] J. N. Tsitsiklis devised a fast algorithm for the eikonal equation. He obtaine
the viscosity solution using ideas involving Dijkstra’'s algorithm, adapted to the eikor
equation, heap sort, and control theory. From a numerical PDE point of view, howe\
Tsitsiklis had an apparently nonstandard approximatiofVt@| on a uniform Cartesian
grid.

In (1995) Sethian [76] and Helmsehal.[40] independently published what appeared tc
be a simpler algorithm making use of the Rouy—Tourin algorithm to approxif¥ate This
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has become known as the “fast marching method.” However, together with Helmsen [¢
we have proven that Tsitsiklis’s approximation is the usual Rouy—Tourin [69] version
Godunov’s monotone upwind scheme. Thatis, the algorithmin [40, 76] is simply Tsitsiklis
algorithm with a different (simpler) exposition.

Our goal here is to extend the applicability of this idea from the eikonal equatic
to any geometrically based Hamiltonian. By this we mean a Hamiltonian satisfying t
properties

Hx,Vy) >0, if Vi #0 (4)
and
H (X, V) is homogeneous of degree oneuiy. (5)
We wish to obtain a fast algorithm to approximate the viscosity solution of
H(x, Vi) = H(X, Vi) — a(x) = 0. (6)

The first step is to set up a monotone upwind scheme to approximate this proble
Such a scheme is based on the idea of Godunov used in the approximation of conse
tion laws. In Bardi and Osher [7; see also 65], the following was obtained (for simplici
we exemplify using two space dimensions and ignore the expliciépendence in the
Hamiltonian),

H (¥, ¥y) &~ HS(DXy, D*yj; DYy, DY)
= exms |(u—yu+)eXtv£ I(u_,u+) H(us v)s

where

I (a, b) = [min(a, b), maxa, b)]

Ming<y<p fa<b
extyl (a,b) = -,
MaX<y<a ifa>Db
. ’. _ - ( .’. _ -
Uﬁ::DiWij ziw’ vy = Dilﬁij Ziw”%yw”)'

(Note that the order may be reversed in the ext operations above—we always obta
monotone upwind scheme which is often, but not always, order invariant [65].)
This is a monotone upwind scheme which is obtained through the Godunov procec
involving Riemann problems, extended to general Hamilton— Jacob equations [7, 65].
If we approximate

H(Vp) = ax,y)
by

H®(D,*p, D_*g; D *y; DYy, D_Yy) (7)
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for Hamiltonians satisfying (4), (5) above, then there exists a unique solutiop; foin
terms ofyiLq j, ¥i j+1, andy; ;. Furthermorey; ; is a nondecreasing function of all these
variables.

However, the fast algorithim needs to have propértyThe solution to (7) depends on
the neighboringp,, , only for v, , < ¥; ;. This gives us a hint as to how to proceed.

For special Hamiltonians of the for (u, v) = F(u?, v?), with F nondecreasing in
these variables, we have the result [61]

HO (U4, u; vy, vo) = F(max((uy)?, (uh)?); max(v;)?, (vh)?)), (8)

wherext = max(x, 0), X~ = min(x, 0). It is easy to see that this numerical Hamiltonian
has the propertyF described above. This formula, as well as the one obtained in Eq.
below, enables us to extend the fast marching method algorithm to a much wider class
before. For example, using this observation we were able to solve an etching problem,
considered in [3], where the authors did not use a fast marching method algorithm,
instead used a local narrow band approach and schemes devised in [64]. The Hamiltc
was

Hpx. 0y, 02) = /02 (L4 (42 +02)) /(¢ + 67 + ¢2)).

We are able to use the same heap-sort technology as for the eikonal equation for prob
of this type. See Figs. 3 and 4. These Figures represent the level contours of an etc
process whose normal velocity is a function of the direction of the normal. The proce
moves down in Fig. 3 and up in Fig. 4.

More generally, foH (u, v) having the property

uH; >0, vH;>0, 9)
we also proved [61]
HO (U, u_; vy, vo) = max[H (uy, vy), Hut, vy), Huy, v, Hut, o], (10)
and propertyF is again satisfied.

Again in [61], we were able to solve a somewhat interesting and very anisotropic etch
problem with this new fast algorithm. Here we took

H (px. 0y) = loyl(1— aley)ey/ (0f + 05)).
where

a=0 if oo <0
a=.8 if >0
and observed merging of two fronts. See Figs. 5and 6. These figures show a two-dimens
etching process resulting in a merger.

The fast method originating in [86] is a variant of Dijkstra’s algorithm and as such involv
the tree-like heap-sort algorithm to compute the smallest of a set of numbers. Receretly E
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FIG.5. Two-dimensional etching with merging using a fast algorithm. Reprinted from [61].

and Dupuis [11] have proposed an extremely simple fast algorithm for a class of con
Hamiltonians including those which satisfy (4) and (5) above. Basically, their stateme
is that the standard Gauss—Seidel algorithm, with a simple ordering, convergénite a
number of iterations for Eq. (7). This would give &(N), not O(N log N) operations,
with an extremely simple-to-program algorithm—no heap sort is needed. Moreover, for
eikonal equation witla(x, y) = 1, the algorithm would seem to converge fi\2iterations

in RY, d =1, 2, 3, which is quite fast. This gives a very simple and fast redistancing a
gorithm. For more complicated problems we have found more-iterations to be necess
but have still obtained promising results, together with some theoretical justification. £
[85] for details, which also include results for a number of nonconvex Hamiltonians. V
call this technique the “fast sweeping method” in [85]. We refer to it in Section 3 when w
discuss the basic distance reinitialization algorithm.

3. LEVEL SET DICTIONARY, TECHNOLOGY, AND NUMERICAL IMPLEMENTATION

We list key terms and define them by their level set representation.

1. The interface boundary (t) is defined by{x | ¢(x,t) = 0}. The regionQ(t) is
bounded byl"(t) : {X | (X, t) > 0} and its exterior is defined bix | ¢(X, t) < 0}.

2. The unit normaN to I'(t) is given by

Vo

Vel
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FIG. 6. Two-dimensional etching with merging using a fast algorithm. Reprinted from [61].

3. The mean curvatureof I'(t) is defined by

Vv
‘e —V. (w)
Vol
4. The Dirac delta function concentrated on an interface is

§()Vel,

whered (X) is a one-dimensional delta function.
5. The characteristic functiogp of a regionQ2 (t) is

x = H(p),
where

Hx)=1 ifx>0
Hx)=0 ifx <0

is a one-dimensional Heaviside function.
6. The surface (or line) integral of a quantibyx, t) overTl is

/Rn P(X, 1) ()| V| dx.
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FIG.7. Two-phase compressible flow calculated with the ghost fluid method. Air on the left and water on t
right. Reprinted from [32].

7. The volume (or area) integral @fx, t) overQ is

/Rn p(x, t)H () dx.

Next we describe three key technological advances which are important in many;, if
most, level set calculations.

8. The distance reinitialization procedure replaces a general level set fupckion
by d(x, t) which is the value of the distance froxto I'(t), positive outside and negative
inside. This assures us thatloes not become too flat or too steep riedy. Letd(x, t) be
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FIG. 8. Mach 1.22 air shock collapse of a helium bubble. Reprinted from [32].

signed distance ofto the closest point ofnl. The quantityd(x, t) satisfiegVvd| = 1,d > 0
in 2,d < 0in ()% and is the steady state solution gas> co) to

oy .
S+ SIE) (VY| 1) =0 a

Y (x,0) =X 1),

where sgix) = 2H (x) — 1 is the one-dimensional signum function. This procedure wa
designed in [84]. The key observation is that in order to defirie a band of widthe
aroundI’, we need solve (11) only for = O(e). It can easily be shown that this can
be used globally to construct distance (with arbitrary accurac¥) (N log N) iterations
[66]. Alternatively, we may use Tsitsiklis's fast algorithm [86], which is a3ON log N),
with a much smaller constant, but which is only first-order accurate. A locally secor
order accurate (in the high-resolution sense) fast marching method was proposed in |
While this method has a much lower local truncation error than a purely first-order accur
method, it is still globally, first-order accurate except for special cases. Finally, we mic
also use the fast sweeping method from [11, 85] as described in the last section, w
appears to hav®(N) complexity and which is also only first-order accurate, although thi
complexity estimate has not been rigorously justified.
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FIG. 9. Nonsmeared detonation wave traveling away from a solid wall. Reprinted from [33].

9. Smooth extension of a quantity, e, onT to a neighborhood df. Let the quantity
be p(x, t). Solve to steady staleg — o)

aq Vo
J— _ v = O
o T Sgr(¢)<|w| q)

ax, 0) = p(x, t).

Again, we need only solve this far = O(¢) in order to extendp to be constant in the
direction normal to the interface in a tube of widthThis was first suggested and imple-
mented in [24], analyzed carefully in [88], and further discussed and implemented in b
[32], and [66]. A computationally efficient algorithm based on heap sort technology a
fast marching methods was devised in [1]. There are many reasons to extend a qua
off of I", one of which is to obtain a well-conditioned normal velocity for level contour:
of ¢ close top = 0 [24]. Others involve implementation of the ghost fluid method of [32]
discussed in the next section.

10. The basic level set method concerns a function t) which is defined throughout
space. Clearly this is wasteful if one only cares about information near the zero level -
The local level set method definesonly near the zero level set. We may solve (2) in
a neighborhood of" of width mAx, wherem is typically 5 or 6. Points outside of this
neighborhood need not be updated by this motion. This algorithm works'isgace—so
not too much intricate computer science is used. For details see [66]. Thus this local met
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FIG. 10. Two deflagration fronts depicted shortly after merging. Reprinted from [33].

works easily in the presence of topological changes and for multiphase flow. An earlier Ic
level set approach called “narrow banding” was devised in [2].

Finally, we repeat that, in the important special case whgilia Eq. 2 is a function only
of x, t, andVg (e.g.,un = 1), Eq. 2 becomes a Hamilton—Jacobi equation whose solutio
generally develop kinks (jumps in derivatives). We seek the unique viscosity solution. Me
good references exist for this important subject; see, e.g., [8, 27]. The appearance of t
singularities in the solution means that special, but not terribly complicated, numeri
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FIG. 11. Two spatial dimensionsy - (%Vp) = f(x,¥),[p] =g9(x,y), [%Vp -N] = h(x, y). Reprinted
from [49].

methods have to be used, usually on uniform Cartesian grids. This was first discusse
[64] and numerical schemes developed there were generalized in [43, 65]. The key ic
involve monotonicity, upwind differencing, essentially nonoscillatory (ENO) schemes, al
weighted essentially nonoscillatory (WENO) schemes. See [43, 64, 65] for more detail

4. COUPLING OF THE LEVEL SET METHOD WITH EXTERNAL PHYSICS

Interface problems involving external physics arise in various areas of science. T
computation of such problems has a very long history. Methods of choice include frc



LEVEL SET METHODS: AN OVERVIEW 481

FIG. 12. Water waves generated by the impact of an (invisible) solid object. Reprinted from [44].

tracking—see, e.g., [41, 87]; phase-field methods—see, e.g., [48, 59]; and the volum
fluid (VOF) approach—see, e.g., [12, 60]. The level set method has had major succe
in this area. Much of the level set technology discussed in the previous two sections:
developed with such applications in mind.

Here, we shall describe level set approaches to problems in compressible flow, inc
pressible flow, flows having singular vorticity, Stefan problems, kinetic crystal growth, a
a relatively new island dynamics model for epitaxial growth of thin films. We shall als
discuss a recently developed technique, the ghost fluid method (GFM), which can be
(1) to remove numerical smearing and unphysical oscillations in flow variables near
interface and (2) to simplify the numerical linear algebra arising in some of the problel
in this section and elsewhere.

4.1. Compressible Flow

Chronologically, the first attempt to use the level set method in this area came in tv
phase inviscid compressible flow [55]. There, to the equations of conservation of ms
momentum, and energy, we appended Eq. (1), which we rewrote in conservation form

(pP)t + V- (ppv) =0 (12)

using the density of the fluid.
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FIG.13. Two-phase incompressible flames depicted shortly after merging (two spatial dimensions). Reprir
from [57].
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FIG. 14. Two-phase incompressible flames depicted shortly after merging (three spatial dimensior
Reprinted from [57].
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The sign ofy is used to identify which gas occupied which region, so it determines tt
local equation of state. This (naive) method suffered from spurious pressure oscillation
the interface, as shown in [45, 46]. These papers proposed a new method which red
these errors using a nonconservative formulation near the interface. However, [45,
still smear out the density across the interface, leading to terminal oscillations for m:
equations of state.

A major breakthrough in this area came in the development of the ghost fluid mett
(GFM) in [32]. This enables us to couple the level set representation of discontinuities
finite difference calculations of compressible flows. The approach was based on using
jump relations for discontinuities which are tracked using Eq. (1) (for two-phase compre
ible flow). What the method amounts to (in any number of space dimensions) is to popu
cells nextto the interface with “ghost values,” which, for two-phase compressible flow, ret
their usual values of pressure and normal velocity (quantities which are continuous acros
interface), with extrapolated values of entropy and tangential velocity (which jump acrc
the interface). These quantities are used in the numerical flux when “crossing” an interf:

An important aspect of the method is its simplicity. There is no need to solve a Rieme
problem normal to the interface, to consider the Rankine—Hugoniot jump conditions,
solve an initial-boundary value problem. Another important aspect is its generality. T
philosophy appears to be as follows: At a phase boundary, use a finite difference sch
which takes only values which are continuous across the interface, using the natural ve
whenever possible. Of course, this implies that the tangential velocity is treated in the s:
fashion as the normal velocity and the pressure when viscosity is present. The same t
true for the temperature in the presence of thermal conductivity.

Figure 7 shows results obtained for two-phase compressible flow using the GFM toge
with the level set method. Air, with density around 1 kg/is to the left of the interface and
water, with density around 1000 kg#nis to the right of the interface. Note that there is no
numerical smearing of the density at the interface itself, which is fortunate, as water cavit:
at a density above 999 kghteading to a host of unphysical problems near the interface
Note too, that the pressure and velocity are continuous across the interface, although
are kinks in both of these quantities. A more complicated multidimensional calculatior
shown in Fig. 8, where a shock wave in air impinges upon a helium droplet. See [32]
more details.

While the GFM was originally designed for multiphase compressible flow, it can be ge
eralized to treat a large number of flow discontinuities. In [33], we generalized this mett
to treat shocks, detonations, and deflagrations in a fashion that removed the nume
smearing of the discontinuity. Figure 9 shows the computed solution for a detonation we
Note that there is no numerical smearing of the leading wave front, which is extremely i
portant in the elimination of spurious wave speeds for stiff source terms on coarse grid:s
first pointed out by [26]. While shocks and detonations have associated Riemann proble
the Riemann problem for a compressible-flow deflagration discontinuity is not well pos
unless the speed of the deflagration is given. Luckily, there is a large amount of literat
on the G-equation for flame discontinuities, which was originally proposed in [50]. Tt
G-equation represents the flame front as a discontinuity in the same fashion as the leve
method so that one can easily consult the abundant literature on the G-equation to of
deflagration speeds for the GFM. Figure 10 shows two initially circular deflagration fror
that have just recently merged together. Note that the light-colored region surrounding
deflagration fronts is a precursor shock wave that causes the initially circular deflagra
waves to deform as they attempt to merge.
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The GFM was extended in [34] in order to treat the two-phase compressible visce
Navier—Stokes equations in a manner that allows a large jump in viscosity across the ir
face. This paper spawned the technology needed to extend the GFM to multiphase inc
pressible flow including the effects of viscosity, surface tension, and gravity, as discus
in the next section.

4.2. Incompressible Flow

The earliest real success in coupling the level set method to problems involving extel
physics came in computing two-phase Navier—Stokes incompressible flow [22, 84]. T
equations can be written as

v V.-(2uD §(p)okN
btuvus VP gy V2uD) 5
o o o

V.-u=0,

whereu = (u, v, w) is the fluid velocity,p is the pressurey = p(¢), andu = (@) are
the piecewise constant fluid densities and viscositjgs,the gravitational forceD is the
viscous stress tensar,is the surface tension coefficiertis the curvature of the interface,
N is the unit normal, and(¢) is a delta function. See [12, 87] for earlier front tracking anc
VOF methods (respectively) using a similar formulation. This equation is coupled to t
front motion through the level set evolution equation (1) witk u. This involves defining
the interface numerically as having a finite width of approximately three to five grid cell
Within this smeared-out band, the density, viscosity, and pressure are modeled as contin
functions. Then thexN/p term is used to approximate the surface tension forces whic
are lost when using a continuous pressure [84]. Successful computations using this m
were performed in [22, 84]. Problems involving area loss were observed and signific
improvements were made in [83].

As mentioned above, the technology from [34] motivated the extension of the ghost fli
method to this two-phase incompressible-flow problem. First, a new boundary-conditic
capturing approach was devised and applied to the variable coefficient Poisson equatic

solve problems of the form
1
V(—Vp) = f,
yol

where the jump conditionsp] = g and [%Vp- N] = h are given ang is discontinuous
across the interface. This was accomplished in [49]. A sample calculation from [49]
shown in Fig. 11, where one can see that both the solufiprand its first derivatives
are sharp across the interface without numerical smearing. Next, this new technique
applied to multiphase incompressible flow in [44]. Here, since one can model the jun
in pressure directly, there is no need to adddk@l /o source term to the right-hand side
of the momentum equation in order to capture the surface tension forces. Instead sur
tension is modeled directly by imposing a pressure jump across the interface. In addit
[44] allows exact jumps in botp and i so that the nonphysical finite width smeared-out
interface in [84] can be replaced by a sharp interface. A three-dimensional calculatior
an (invisible) solid sphere impacting water and causing a splash is shown in Fig. 12. H
the air has density near 1 kglwhile the water has density near 1000 k§/m
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Recently, in [57], this boundary-condition-capturing technology was extended to tr
two-phase incompressible flames where the normal velocity is discontinuous across th
terface as well. Figure 13 shows an example calculation where two flames have just mer
Note that the velocity vectors in Fig. 13 clearly indicate that the velocity is kept disco
tinuous across the flame front. Two-phase incompressible flames were considered in |
as well, and a method was proposed that keeps the interface sharp and removes num
smearing. Unfortunately, the method proposed in [39] cannot treat topological change
the flame front. Our method improves upon [39], allowing flame-front discontinuities
merge, as in Fig. 13, or pinch off. Figure 14 shows two flame fronts shortly after mergi
in three spatial dimensions.

4.3. Topological Regularization

In [37, 38], it is shown that the level set formulation provides a novel way to regulari:
certain ill-posed equations of interface motion by blocking interface self-intersection. \
computed two- and three-dimensional unstable vortex motion without regularization ot
than that in the discrete approximationst@)—this is done over a few grid points. The
key observation is that viewing a curve or surface as the level set of a function, and t
evolving it with a perhaps unstable velocity field, prevents certain types of blow-up frc
occuring. This is denoted as “topological regularization.” For example, a tracked curve
develop a figure eight pattern, but a level-set-captured curve will pinch off and stabil
before this happens. For the setup (involving two functions), see [37], where we perfc
calculations involving the Cauchy—Riemann equations. The motions agree until pinch
when the topological stabilization develops.

As an example, we considered the two-dimensional incompressible Euler equatic
which may be written as

wi+U-Vo=0
Vxu=w

V.-u=0.

We are interested in situations in which the vorticity is initially concentrated on a s
characterized by the level set functipras follows:

vortex parthw = H(p)

1
vortex sheetw = §(¢), (strength of sheet I|SV_|>
%
. d ,
vortex sheet dipole» = d—S(ga) =45(p).
@

The key observation is thatalso satisfies a simple advection equation aatidw can be
easily recovered. For example, for the vortex sheet case we solve

gp+u-Vo=0

(oYY
u_( 9% )A 5(¢).
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Standard Laplace solvers may be used. See [38] for results involving two- and thr
dimensional flows. In [66] we added reinitialization and extension to this procedure a
obtained improved results in the two-dimensional case.

4.4, Stefan Problem

Another classical field concerns Stefan problems [24]; see also [78] for an earlier, |
much more involved level-set-based approach. Here we wish to simulate melting ice
freezing water, or more complicated crystalline growth, as in the island dynamics mo
discussed below.

We begin with a simplified, nondimensionalized model (see [47] for an extension
mentioned below),

aT
= V2T, x40Q=T()

ww=[VT-N], xel(t),
where [] denotes the jump across the boundary, and
T=—2ck (1 — AcoS«kpd + 8p)) + eyvn(1 — Acoskaf + 6p))

onT'(t) and where is the curvatured = cos ! ¢,/|Ve/|, and the constantd, « a, 6o, &¢
ande, depend on the material being modeled.

We directly discretize the boundary conditiond'afTo updateT at grid nodes near the
boundary, if the stencil for the heat equation would crbs&@s indicated by nodal sign
change inp), we merely use dimension by dimension one-sided interpolation and the giv
boundaryT value at an imaginary node placedgat= O (found by interpolation o) to
computeT,y and/orTyy, (never interpolating across the interface), rather than the usu
three-point central stencils. The level set functioiis updated and then reinitialized to
be equal to the signed distanceltoNote that the level set update usgsthat has been
extended off the interface. See [24] for details.

We note that one can easily extend this to

M v vT)
at V)

wherex is a different positive constant inside and outsid&aind
un=[«kVT -N], xe (),

as was recently done in [47].

An important observation is that our finite differencing at the interface leads to a nc
symmetric matrix inversion when implicit discretization in time, is applied, although th
method does have nice properties such as second-order accuracy and a maximum prin
This lack of symmetry is a bit problematic for a fast implementation, especially for ve
large values of . Fortunately, an extension of GFM can be used to derive a different spat
discretization, producing a symmetric matrix that can be inverted rather easily using f
methods. This was originally proposed by Fedkiw [31] and is described below.
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It is sufficient to explain how the spatial derivatives are derived with respect to o
variable, since there are no mixed partial derivative terms. Suppose the interfacepoint
falls in between two grid pointg andx; ;. Frome, the distances between x; 11, andx;
can be estimated by

Xt — X = (=¢i AX)/(Pit1 — ¢i) = O1AX (13)
Xit1— X & (—=¢i11AX) /(i1 — ¢i) = 2AX. (14)
To avoid numerical errors caused by division byPor 6, are not used if either is less than
AX?. If 61 < AX?, thenx; is assumed equal tg. If 6, < Ax?, thenx; is assumed equal to
X 1+1. Either assumption is effectively a second-order perturbation of the interface locat

leading to second-order accurate spatial discretization. The nonsymmetric second-c
accurate discretization fak given in [24] is

(T =TY (T =T /1
(TXX)I ~ << 91AX ) ( AX >>/2(91AX+ AX) (15)

(T2 =T (T =T 1
(Txx)igr =~ ((AX > (QZAX ))/Z(Ax + 02AX), (16)

whereT; denotes the value df atx; and is determined from the boundary condition. Instea
of using the nonsymmetric equations (15) and (16), Fedkiw [31] proposed using

TT—T Ti—T_1
T ~ — AX 17
( XX)I ( 6,AX AX )/ ( )
Tio—Tsr Tipa—Ti
Tex)it1 &~ — A 18
(Txx)i+1 < Ax 0,0% X, (18)

which leads to a symmetric linear system when using implicit time discretization. Equati
(17) is derived using linear extrapolation Bffrom one side of the interface to the other,
obtaining

T —T,
TG=Tf+<1—91)( fel ) (19)

as a ghost cell value foF at x; ;. The standard second-order discretizatiorg—zéf at

usingTg at X1 is
Te—Ti Ti—-Tia
Tuy) ~ — AX, 20
( XX)I ( AX AX )/ ( )

and the substitution of Eq. (19) into Eqg. (20) leads directly to (17). Equation (18) is deriv
similarly.

Formulas (17) and (18) haw&(1) errors using formal truncation error analysis. However
they are second-order accurate on a problem where the interface has been perturbe
O(Ax?), making them second-order accurate in the interface location. Assume that
standard second-order accurate discretization is used to obtain the standard linear syst
equations foll at every grid point except for those adjacent to the interface, that is except
X andx;_ 1. Since the linear system of equations for the nodes to the left and inchgdimg
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independent of the system for the nodes to the right inclugling only the linear system to
the left is discussed here. Equation (20) is used to write a linear equatidnifitiroducing

a new unknowg, and the system is closed with Eq. (19) T@y. In practice, Egs. (19) and
(20) are combined to obtain Eq. (17) and a symmetric linear system of equations. This lir
system of equations results in well-determined values (up to some prescribed tolerance
roundoff error levels) oT at each grid node, as well as a well-determined valuksgfrom

Eqg. (19)). For the sake of reference, desigfa#es the solution vector containing the values
of T at each grid point to the left and includingas well as the value afs atx; . 1which are
obtained by solving this symmetric linear system. Belvis shown to be a second-order
accurate solution to our problem by showing that it is the second-order accurate solutio
a modified problem where the interface location has been perturb€d hy?).

Consider the modified problem where a Dirichlet boundary conditioh ef Tg is spec-
ified atx; .1, whereTg is chosen to be the value ®§ from T defined above. This modified
problem can be exactly discretized to second-order accuracy everywhere using the star
discretization at every node except where Eq. (20) is used. We note that Eq. (20) is
the standard second-order accurate discretization when a Dirichlet boundary conditio
T = Tgis applied ak; ;1. This new linear system can be discretized and solved in a stande
fashion to obtain a second-order accurate solution at each grid node. Then the realiz:
thatT is an exact solution tthis linear system implies thaf is a second-order accurate
solution to this modified problem. Next consider the interface location dictated by the mc
ified problem. Sincd is a second-order accurate solution to the modified probleogn
be used to obtain the interface location to second-order accuracy. The linear interpo
that usesT; atx; and Tg at X1 predicts an interface location ekactly x, which is the
true interface location. Since higher order interpolants (higher than linear) can contrib
at most arO(Ax?) perturbation of the interface location, the interface location dictated &
the modified problem is at most &)(Ax?) perturbation of the true interface location,

In [25], we used this strategy to obtain a second-order accurate symmetric discretiza
of the variable coefficient Poisson equation.

V((KVT) = f

on irregular domains in as many as three spatial dimensions. Then, in a straightforw
way, we obtained second-order accurate symmetric discretizations of the heat eque
on irregular domains using backward Euler time stepping With= (Ax)? and Crank—
Nicolson time stepping witlAt = AX.

4.5. Kinetic Crystal Growth

For an initial state consisting of any number of growing crystalfRihd arbitrary,
moving outward with given normal growth velocityN) > 0 which depends on the angle
of the unit surface normal, the asymptotic growth shape is a single (kinetic) Wulff-
construct crystal. This result was first conjectured by Gross in (1918) [35]. This shape
also known to minimize the surface integrah@N) for a given volume. We gave a proof
of this result [62], see also [81], using the level set formulation and the Hopf-Bellm:
formulas [6] for the solution of a Hamilton—Jacobi equation. Additionally, with the hel,
of the Brunn—Minkowski inequality, we showed that if we evolve a convex surface und
the motion described in (3), then the ratio to be minimized monotonically decreases
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its minimum as time increases, which provides a new proof that the Wulff constructi
solves the generalized isoperimetric problem as well. Thus there is a new link betw
this hyperbolic surface evolution and this (generally nonconvex) energy minimization. T
also provides a convenient framework for numerically computing anisotropic Kinetic crys
growth [67]. The theoretical and numerical results of this work are illustrated in the unifor
density island dynamics models of [15, 36]. That model describes crystals growing in t
dimensions with an anisotropic velocity.

An interesting spinoff of this work came in [67], in which we proved that any two
dimensional Wulff shape can be interpreted precisely as the solution of a Riemann pi
lem for a scalar conservation law—contact discontinuities correspond to jumps in the
gle of the normal to the shape, smoothly varying nonflat faces correspond to rarefac
waves, and planar facets correspond to constant states, which develop because of kir
the conservation law’s flux function. These kinks are also seen in the convexified W
energy.

4.6. Epitaxial Growth of Thin Films

A new continuum model for the epitaxial growth of thin films has been develope
Molecular beam epitaxy (MBE) is a method for growing extremely thin films of materia
The essential aspects of this growth process are as follows: Under vacuum conditio
flux of atoms is deposited on a substrate material, typically at a rate that grows one atc
monolayer every several seconds. When deposition flux atoms hit the surface, they k
weakly rather than bounce off. These surface “adatoms” are relatively free to hop fr
lattice site to lattice site on a flat (atomic) planar surface. However, when they hop to a
at which there are neighbors at the same level, they form additional bonds which hold tt
in place. This bonding could occur atthe “step edge” of a partially formed atomic monolay
contributing to the growth of that monolayer. Or it could occur when two adatoms colli
with each other. If the critical cluster size is one, the colliding adatoms nucleate a n
partial monolayer “island” that will grow by trapping other adatoms at its step edges.

By these means, the deposited atoms become incorporated into the growing thin 1
Each atomic layer is formed by the nucleation of many isolated monolayer islands, wh
then grow in area, merge with nearby islands, and ultimately fill in to complete the lay
Because the deposition flux is continually raining down on the entire surface, includi
the tops of the islands, a new monolayer can start growing before the previous laye
completely filled. Thus islands can form on top of islands in a “wedding cake” fashion, a
the surface morphology during growth can become quite complicated.

The island dynamics model is a continuum model designed to capture the longer-len
scale features that are likely to be important for the analysis and control of monolayer t
film growth. It is also intended to model the physics relevant to studying basic issues
surface morphology, such as the effects of noise on growth, the long time evolution
islands, and the scaling relationships between surface features (mean island area, stef
length, etc.) in various growth regimes (precoalescence, coalescence). Refer to the cl
work of [14] for useful background on the modeling of the growth of material surface
Our present discussion of the island dynamics model is an abridged version of what
discussed in [54]. We shall present this new model in some detail because, although it
many of the features of the Stefan problem, it also requires some new level set technol
This includes a wedding cake formulation involving several level sets of the same functi
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nucleation of new islands, and nontrivial numerical treatment of the interface to obtain ra
convergence of implicit time marching schemes.

In the island dynamics model, we treat each of the islands present as having a unit he
but a continuous (step edge) boundary on the surface. This represents the idea that the
are atomic monolayers, so that height is discrete, but they cover relatively large regi
on the substrate, so andy are continuum dimensions. The adatoms are modeled by
continuous adatom density function on the surface. This represents the idea that they
very mobile, and so they effectively occupy a given site for some fraction of the time, wi
statistical continuity, rather than discretely.

Thus, the domain for the model is tkey region originally defined by the substrate, and
the fundamental dynamical variables for this model are

e Theisland boundary curvég(t), i =1,2,..., N
e The adatom density on the surfaeéx, vy, t).

The adatom density obeys a surface diffusive transport equation, with a source term f
the deposition flux

a—p:V~(DV,o)+F,

ot
whereF = F(x, v, t) is specified. During most phases of the growth, itis simply a constar
This equation may also include additional small loss terms reflecting adatoms lost to
nucleation of new islands, or lost to de-absorption off the surface. This equation must
supplemented with boundary conditions at the island boundaries. In the simplest mode
irreversible aggregation, the binding of adatoms to step edges leaves the adatom popul
totally depleted near island boundaries, and the boundary condition is

plr =0.

More generally, the effects of adatom detachment from boundaries, as well as the en
barriers present at the boundary, lead to boundary conditions of the form

ap _
[Ap+ Ba—n] =C,

whereC is given and || denotes the local jump across the boundary. In particular, note th
p itself can have a jump across the boundary, even though it satisfies a diffusive trans
equation. This simply reflects the fact that the adatoms on top of the island are much n
likely to incorporate into the step edge than to hop across it and mix with the adatoms
the lower terrace, and vice versa.

The island boundarieB; move with velocitiess = vyN, where the normal velocityy
reflects the island growth. This is determined simply by local conservation of atoms: 1
total flux of atoms to the boundary from both sides times the effective area peratom,
must equal the local rate of growth of the boundagy,

v = —a’[q-N]

(this assumes there is no particle transport along the boundary; more generally, there
contribution from this as well), whegis the surface flux of adatoms to the island boundary
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andN is the local outward normal. In general, the net atom fjwan be expressed in terms
of the diffusive transport, as well as attachment and detachment probabilities, all of wh
can be directly related to the parameters of kinetic Monte Carlo models. In the special c
of irreversible aggregatiom, is simply the surface diffusive flux of adatoms

q=—-DVp.

To complete the model we include a mechanism for the nucleation of new islands
islands nucleate by random binary collisions between adatoms (and if the critical clu:
size is one), we expect the probability that an island is nucleated at &,taha site X, y),
scales as

Pldx, dy, dt] = ep(x, y, t)?dtdx dy

The model describes nucleation as a site-by-site, timestep-by-timestep random proce
simplifying alternative is to assume the nucleation occurs at the continuous rate obtai
by averaging together the probabilistic rates at each site. In this case, if m@)leenote
the total number of islands nucleated prior to timere have the deterministic equation

% = (ep?).
where(-) denotes the spatial average. In this formulation, at each time witi¢meaches

a new integer value, we nucleate a new island in space. This is carried out by placir
randomly on the surface with a probability weighted & so that the effect of random
binary collisions is retained.

This basic model also has natural extensions to handle more complex thin film mod
For example, additional continuum equations can be added to model the dynamics of
density of kink sites on the island boundaries, which is a microstructural property tl
significantly influences the local adatom attachment rates (see [15]). Also, we can col
this model to equations for the elastic stress that results from the “lattice mismatch” betw
the size of the atoms in the growing layers and the size of the atoms in the substrate.

Conversely, the above model has a particular interesting extreme simplification. We
go to the limit where the adatoms are so mobile on the surface>(co) that the adatom
density is spatially uniformp (X, y, t) = p(t). In this case, the loss of adatoms due to the
absorbing boundaries is assumed to take on a limiting form proportional to the adat
density and the total length of all the island boundaries, which can be written as a simpl
sink term

dp

i F—AXLp.
(This equation can be derived systematically from the conservation law for the total num
of adatoms, | p, that follows from the adatom diffusion equation. The above loss ter
is just a simplified model for the net loss of adatoms to the island boundaries.) Furtt
it is assumed the velocity takes on a given normal-dependent limiting figyras vy (N)
(which implies the growing islands will rapidly assume the associated “Wulff shape” f
this functionvn(N) (as in [62])). We have used this “uniform density” model to prototype
the numerical methods and to develop an understanding of how the island dynamics mc
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are related to the continuum “rate equation” models that describe island size distribut
evolution while using no information at all about the spatial interactions of the islands.

Much ofthe above modelis formally a Stefan problem and many of the level settechniq
required for this were developed in [24] and can similarly be applied here. In additic
the internal boundary condition discretization of the adatom diffusion equation can
implemented using the symmetric matrix version of the discretization proposed by Fed|
[31] and discussed above.

5. AVARIATIONAL APPROACH WITH APPLICATIONS TO MULTIPHASE MOTION

In many situations, e.g., crystal growth, a material is composed of three or more pha
The interfaces between the phases move according to some law. If the material is a n
and its grain orientation is different in each region, then an isotropic surface energy me
that the velocity is the mean curvature of the interface. Or the velocities of the interfas
may depend on the pair of phases in contact, e.g., a different constant velocity on €
interface.

Several fixed grid approaches to this problem have been used. Merriman, Bence,
Osher [53] have extended the level set method to compute the motion of multiple junctic
Also in that paper, and in [51, 52], a simple method based on the diffusion of characteri:
functions of each se&®;, followed by a certain reassignment step, was shown to be appr
priate for the motion of multiple junctions in which the bulk energies are zero (and hen
the constants; = 0,i =1, ..., n) and thef; ; are all equal to the same positive constant,
i.e., pure mean curvature flow. See Eq. (21) below.

Another method using an “influence matrix” was designed in [75]. However, as caution
by the author, the method is expensive and complex.

More general motion involving somewhat arbitrary functions of curvature, perhaps d
ferent for each interface, was proposed in [53] as well. This was implemented basic:
by decoupling the motions and then using a reassignment step. Again each region he
own private level set function. This function moves each level set with a nhormal veloci
depending on the proximity to the nearest interface; thus vacuum and overlapping regi
generally develop. Then a simple reassignment step is used, removing all the spuriou
gions. For details see [53]. In that paper there was no restriction to gradient flows. Howe
the general method in [53] lacks (so far) a clean theoretical basis to guide the desig
numerical algorithms. These difficulties were rectified by the following method.

In [88] we developed the variational level set approach inspired by [68]. Given a disjo
family ©; of regions inR? with the common boundary betweexn andQ2; denoted by ;,
we associate to this geometry an energy function of the form

E=E+E

Er= Y fijlength(I' ) (21)
1<i<j=n

Ex= ) earedQ).
1<i<n

where E; is the energy of the interface (surface tensidey,is bulk energy, anc is the
number of phases. The gradient flow induces motion such that the normal velocity of e
interface is defined in (22). At triple points (which can be seen geometrically by the trian
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inequality to be the only stable junctions if all ttig; > 0), the angles are determined by
(23) throughout the motion.

Normal velocity oflj ; = (vn)i,j = fij«ij + (& —¢ej))and (22)
sing sing sing
1_ 2 _ 3 23)
fo3 fa1 f1o
This could be rewritten as
E=E1+E
n
Er=>n [ [s(atx v 0150 y.0ldxdy (24)
i=1
n
E:=> e [ [Hinocy.vdxay
i=1
where
fi,j=)4+yj, l1<i<j=n
In the (most interesting) case wher= 3 we can solve uniquely for the.
Now our problem becomes the following:
Minimize E subject to the constraint that
n
> H@@x.y)—1=0. (25)

i=1

This infinite set of constraints prevents the development of overlapping regions anc
vacuum. It requires that the level curvgsg, y) | ¢i (X, y, t) = 0} match perfectly.

The implementation of (24) with the infinite set of constraints (25) is computational
demanding. Instead we try to replace the constraint (25) by a single constraint

_ _ 12
/ O H@ix,y, 1) -1 dxdy=e, (26)

2

wheree > 0 is as small as we can manage numerically.

The gradient projection method leads us to an interesting coupled system which invol
motion of level contours of eacl with normal velocitya + bk together with a term
enforcing the no-overlap/vacuum constraint. We find that Ax in real calculations. See
[88] for details.

We have used this technique to reproduce the general behavior of complicated bu
and droplet motions in two and three dimensions [90]. The problems included soap bul
colliding and merging drops falling or remaining attached to a generally irregular ceili
(see Fig. 15), liquid penetrating through an asymmetric funnel opening (see Fig. 16),
mercury sitting on the floor (see Fig. 17).

This variational approach has also been found to have many applications in comp
vision—this will be discussed in the next section.
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6. APPLICATIONS TO COMPUTER VISION AND IMAGE PROCESSING

The use of PDEs and level set motion inimage analysis and computer vision has explc
in recent years. Good references include [18, 58].

One basic idea is to view an imagewsx, Y), a function defined on a square, and obtain
a (usually second-order) flow equation of the form

U = F(u, Du, D?u, x, t)
(27)
u(x, y, 0) = uo(x, y),

which, for positivet, processes the image.

For example, if one solves the heat equation witu, Du, D?u, x,t) = Au, then
u(x, y, t) is the same as convolution of with a Gaussian of variande

L. I. Rudin, in his Ph.D. thesis [70], made the point that images are largely characteri:
by singularities, edges, boundaries, etc., and thus nonlinearity, especially ideas relate
shock propagation, should play a role. This led to the very successful total variation—ba
image restoration algorithms of [71, 72]. Briefly, if we are presented with a noisy blurre
image

Up=j*Uu+n, (28)

wherej is a given convolution kernel, and the mean and variance of the noise are giv
we wish to obtain the “best” restored image. This leads us (see [71, 72]) to the evolut
equation

Ut=V~%—/\j*(j*U—Uo) (29)
t=0 t=0.0022
50 50
40 U w0 U
30 30
20 20
10 10
10 20 30 40 50 10 20 30 40 50
1=0.00248 1=0.00252
50 50
40 40
30 30 O
20 20
10 10
10 20 30 40 50 10 20 30 40 50

FIG. 15. Three-dimensional drop falling from ceiling. Reprinted from [90].
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dx=0.005, dt=0.00001

t=0 1=0.01
200 200
150 \V 150
100 100
50 50
08z 200 =FBs 200
200 200
150 150
100 100
50 50
=02 200 =0¥be 200
200 200
150 \_D_/ 150
100 100
50 U 50
100 200 100 200

g=50, surface tension with the funnel=0.1, surface tension with the air=0.2

FIG. 16. Liquid falling through funnel opening. Reprinted from [90].

dx=0.01, dt=0.00001

t=0 t=0.002
100 100
80 80
60 60
40 40
20 /\ 20 m
20 40 60 80 100 20 40 60 80 100
1=0.02 1=0.05
100 100
80 80
60 60
40 40 m
20 O 20
20 40 60 80 100 20 40 60 80 100

FIG. 17. Mercury droplet responding to surface tension. Reprinted from [90].
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to be solved fot > 0, whereu(x, y, 0) is given, andi.(t) > O is obtained as a Lagrange

multiplier, or is set to be a fixed constant. jifx u = u, this becomes a pure denoising

problem. The (very interesting) geometric interpretation of this procedure is that each le
contour ofu is moved normal to itself with velocity equal to its curvature, divided by the
norm of the gradient afi, then “pulled back” in an attempt to deconvolve (28). The result
are state-of-the-art for many problems. Noisy regions can be thought of as correspondir
contours having very high curvature, while edges have finite curvature and infinite gradie|

Here the motion of level sets is just used to interpret the dynamics. In [4], it was sho
that reasonable axioms of image processing lead to the remarkable fact that motion of |
contours by a function of curvature is fundamental to the subject. The artificialttime
actually the scale parameter [4].

We would like to describe a few new applications of this set of ideas. In [10], we have cc
sidered the problem of processing of images defined on manifolds. The technique actt
can be used to solve a wide class of elliptic equations on manifolds, without triangulati
using only a local Cartesian grid, for very general situations.

Given a manifold inR3, defined by (x, y, z) = 0, we can define the projection matrix

Poy =1 =V g YV (30)
VY| VYl

If uis animage defined oy = 0 we can use our level set calculus to extend it constar
normal to the manifold, in some neighborhood of the manifold.

If ug is the original noisy image, the energy to be minimized is

A
E() = /Rglpwvulr?(llf)IVIﬂIdXJr 5/(U — U)*8(¥)| V| dx.

Using the gradient descent algorithm, i.e., following the general procedure of [72, 88], le:
us to

1 Py, Vu
Us = < Vv

V| | Pyy VUl

This corresponds to total variation denoising. This is done using the local level set mettl
[66] which allows great flexibility in geometry, while always using a Cartesian grid. Se
[10] for denoising and deblurring results.

The technique is quite general—both variational problems and PDEs defined on manifc
can be solved in a reasonably straightforward fashion, without restrictions on the manif
and without complicated triangulation, just by using a fixed Cartesian grid.

Another basic image processing task is to detect objects hidden in anigagpopular
technique is called active contours or snakes, in which one evolves a curve, subjec
constraints, until the curve surrounds the image.

The level set method was first used in [16] as a very convenient tool to follow the moti
of active contours in order to surround hidden objects. This was an important step si
topological changes could easily be handled, a variational approach could easily be
[17], and stable, easy-to-program algorithms resulted. The curve is moved with a velo
which vanishes when the object is surrounded. Thus edge detectors are traditionally
to stop the evolving curve. For example, one might use

|V1//|> — AU — Uo).

g(IVuol) = (1/(L+ |V j, * Uo))?,

wherej, is a Gaussian of varianee
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Mesh size = 512x344, Image size =256x172

FIG. 18. Active contour segmentation of an MRI brain image from its background. Reprinted from [19].

In [20] the authors developed a model which was not based on edges, using a s
parameter, based on a simplification of the Mumford—Shah [56] energy-based segmenta
The implementation is done through the variational level set approach [88] and the res
are remarkable. The method has a denoising capability as well as the ability to perf
a multiscale segmentation. See [20, 21] for details. Here we just present the evolu
equation for the level set functian

_ Vo 2 2
¢t = Vol |uV - —— —v —2A(Up — C1)" + A(Up — C2)°|,
Vel

for parameterst, v, A > 0, wherec, andc, are the averages afy over the regions for
whichg > 0 andy < 0, respectively corresponds to the bulk energy of the area for whick
¢ > 0; u corresponds to the surface tension of the interface;iaisdthe penalty for the
L2 error betweeruy and its mean over each region. Figure 18 shows an active contc
segmenting a MRI brain image from its background.

A somewhat related problem as discussed in [89] is the following. Given a collecti
of unorganized points, and/or curves, and/or surface patches, find a surface which cz
regarded as its shape. This is a fundamental visualization problem which arises in comg
graphics, visualization, and simulation. No assumptions about the ordering, connecti
or topology of the data sets or of the true shape are given. The input is the general dist
to the data set which is given on a (usually logically rectangular) grid. Additionally, we m:
input the values of the normal to the surface at the same or different data points.

The key idea is to find a functiop whose zero level set is the interpolating surfage;
changes sign as one goes from inside to outside the surface. The output is the discrete v
of ¢, which can be reinitialized to be signed distance to this surface.

We set up avariational problem, which basically minimizes the integral over the unkno
surface, of thepth power of distance to the data set. We may include information about t
normals in analogous fashion.

Gradient descent (as in the image restoration and active contour problems) gives
weighted motion by curvature plus convection algorithm. The results are very promisi
as shown in Fig. 19. For more details, see [89].
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Interpolation of Two Linked Tori, R = 0.24, r=0.05

'

initial data

S

2000 iterations 2500 iterations

FIG. 19. Interpolation of two linked tori. Reprinted from [89].

7. CONCLUSION

The idea of using a level set to represent an interface is a very old one. The level
method itself has antecedents, for example, inGhequation approach of Markstein [50].
What is new is the level set method technology, theoretical justification through viscos
solutions, and the enormous number of wide-ranging applications that are now availa
with new applications developing quite frequently.
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