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The level set method was devised by S. Osher and J. A. Sethian (1988,J. Comput.
Phys. 79, 12–49) as a simple and versatile method for computing and analyzing the
motion of an interface0 in two or three dimensions.0 bounds a (possibly multiply
connected) regionÄ. The goal is to compute and analyze the subsequent motion of
0 under a velocity fieldv. This velocity can depend on position, time, the geometry
of the interface, and the external physics. The interface is captured for later time as
the zero level set of a smooth (at least Lipschitz continuous) functionϕ(x, t); i.e.,
0(t) = {x | ϕ(x, t) = 0}. ϕ is positive insideÄ, negative outsideÄ, and is zero on
0(t). Topological merging and breaking are well defined and easily performed. In
this review article we discuss recent variants and extensions, including the motion
of curves in three dimensions, the dynamic surface extension method, fast methods
for steady state problems, diffusion generated motion, and the variational level set
approach. We also give a user’s guide to the level set dictionary and technology
and couple the method to a wide variety of problems involving external physics,
such as compressible and incompressible (possibly reacting) flow, Stefan problems,
kinetic crystal growth, epitaxial growth of thin films, vortex-dominated flows, and
extensions to multiphase motion. We conclude with a discussion of applications to
computer vision and image processing.c© 2001 Academic Press

1. INTRODUCTION

The original idea behind the level set method was a simple one. Given an interface0

in Rn of codimension one, bounding a (perhaps multiply connected) open regionÄ, we
wish to analyze and compute its subsequent motion under a velocity fieldv. This velocity
can depend on position, time, the geometry of the interface (e.g., its normal or its mean
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curvature), and the external physics. The idea, as devised in 1987 by S. Osher and J. A.
Sethian [64] is merely to define a smooth (at least Lipschitz continuous) functionϕ(x, t),
that represents the interface as the set whereϕ(x, t) = 0. Herex = x(x1, . . . , xn) ε Rn.

The level set functionϕ has the following properties:

ϕ(x, t) > 0 for x ∈ Ä
ϕ(x, t) < 0 for x /∈ Ǟ
ϕ(x, t) = 0 for x ∈ ∂Ä = 0(t).

Thus, the interface is to be captured for all later time, by merely locating the set0(t) for
whichϕ vanishes. This deceptively trivial statement is of great significance for numerical
computation, primarily because topological changes such as breaking and merging are well
defined and performed “without emotional involvement.”

The motion is analyzed by convecting theϕ values (levels) with the velocity fieldv. This
elementary equation is

∂ϕ

∂t
+ v · ∇ϕ = 0. (1)

Herev is the desired velocity on the interface and is arbitrary elsewhere.
Actually, only the normal component ofv is needed,vN = v · ∇ϕ|∇ϕ| , so (1) becomes

∂ϕ

∂t
+ vN|∇ϕ| = 0. (2)

In Section 3 we give simple and computationally fast prescriptions for reinitializing the
functionϕ to be signed distance to0, at least near the boundary [84], smoothly extending the
velocity fieldvN off of the front0 [24] and solving Eq. (2) only locally near the interface0,
thus lowering the complexity of this calculation by an order of magnitude [66]. This makes
the cost of level set methods competitive with that of boundary integral methods, in cases
where the latter are applicable; e.g, see [42].

We emphasize that all this is easy to implement in the presence of boundary singularities
and/or topological changes and in two or three dimensions. Moreover, in the case which
vN is a function of the direction of the unit normal (as in kinetic crystal growth [62] and
uniform density island dynamics [15, 36]), Eq. (2) becomes the first-order Hamilton–Jacobi
equation

∂ϕ

∂t
+ |∇ϕ|γ (N) = 0, (3)

whereγ = γ (N) is a given function of the normal,N = (∇ϕ)/|∇ϕ|.
High-order accurate, essentially nonoscillatory discretizations to general Hamilton–

Jacobi equations including (3) were obtained in [64]; see also [43, 65].
Theoretical justification of this method for geometric-based motion came through the the-

ory of viscosity solutions for scalar time-dependent partial differential equations [23, 30].
The notion of viscosity solution (see e.g., [8, 27])—which applies to a very wide class of
these equations, including those derived from geometric-based motions—enables users to
have confidence that their computer simulations give accurate, unique solutions. A particu-
larly interesting result is in [29], where motion by mean curvature, as defined by Osher and
Sethian in [64], is shown to be essentially the same motion as is obtained from the asymp-
totics in the phase field reaction diffusion equation. The motion in the level set method
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involves no superfluous stiffness as is required in phase field models. As was proven in
[53], this stiffness due to a singular perturbation involving a small parameterε will lead to
incorrect answers as in [48] without the use of adaptive grids [59]. This is not an issue in
the level set approach.

The outline of this paper is as follows: In Section 2 we present recent variants, extensions,
and a rather interesting selection of related fast numerical methods. This section might
be skipped at first, especially by newcomers to this subject. Section 3 contains the key
definitions and basic level set technology, as well as a few words about the numerical
implementation. Section 4 describes applications in which the moving interfaces are coupl-
ed to external physics. Section 5 concerns the variational level set approach with applications
to multiphase (as opposed to two phase) problems. Section 6 gives a very brief introduction
to the ever-increasing use of level set methods and related methods in image analysis.

2. RECENT VARIANTS, EXTENSIONS, AND RELATED FAST METHODS

2.1. Motion of Curves in Three Spatial Dimensions

In this section we discuss several new and related techniques and fast numerical methods
for a class of Hamilton–Jacobi equations. These are all relatively recent developments and
less experienced readers might skip this section at first.

As mentioned above, the level set method was originally developed for curves inR2 and
surfaces inR3. Attempts have been made to modify it to handle objects of high codimension.
Ambrosio and Soner [5] were interested in moving a curve inR3 by curvature. They used the
squared distance to the curve as the level set function, thus fixing the curve as the zero level
set, and evolved the curve by solving a PDE for the level set function. The main problem
with this approach is that one of the most significant advantages of the level set method, the
ability to easily handle merging and pinching, does not carry over. A phenomenon called
“thickening” emerges, where the curve develops an interior.

Attempts have also been made in other directions, e.g., front tracking (see [41]), where the
curve is parameterized and then numerically represented by discrete points. The problem
with this approach lies in finding when merging and pinching will occur and in reparameter-
izing the curve when they do. The representation we derived in [13] makes use of two level
set functions to model a curve inR3, an approach Ambrosio and Soner also suggested but did
not pursue because the theoretical aspects became very difficult. In this formulation, a curve
is represented by the intersection between the zero level sets of two level set functionsφ and
ψ , i.e., whereφ=ψ = 0. From this, many properties of the curve can be derived, such as
the tangent vectors,T=∇ψ ×∇φ/|∇ψ ×∇φ|, the curvature vectors,κN=∇T · T, and
even the torsion,τN=−∇B · T, whereN andB are the normal and binormal respectively.

Motions of the curve can then be studied under the appropriate system of PDE’s involving
the two level set functions. The velocity can depend on external physics, as well as on the
geometry of the curve (as in the standard level set approach). The resulting system of PDEs
for ψ andφ is

φt = −v · ∇φ
ψt = −v · ∇ψ.

A simple example involves moving the curve according to its curvature vectors, for which
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FIG. 1. Merging and pinching of curves inR3 moving by mean curvature. Reprinted from [13].

v = κN. We have shown that this system can also be obtained by applying a gradient descent
algorithm minimizing the length of the curve,

L(φ, ψ)=
∫

R3
|∇ψ ×∇φ|δ(ψ)δ(φ)dx.

This follows the general procedure derived in [88] for the variational level set method for
codimension one motion, also described in [90]. Numerical simulations performed in [13]
on this system of PDEs, and shown in Fig. 1 and 2, show, that merging and pinching off are
handled automatically and follow curve-shortening principles.

We repeat the observation made above that makes this sort of motion easily accessible
to this vector-valued level set method. Namely, all geometric properties of a curve0 which
is expressed as the zero level set of the vector equation

φ(x, y, z, t) = 0

ψ(x, y, z, t) = 0
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FIG. 2. Merging and pinching of curves inR3 moving by mean curvature. Reprinted from [13].

can easily be obtained numerically by computing discrete gradients and higher derivatives
of the functionsφ andψ restricted to their common zero level set.

This method will be used to simulate the dynamics of defect lines as they arise in het-
eroepitaxy of nonlattice notched materials; see [79, 80] for Lagrangian calculations.

An interesting variant of the level set method for geometry-based motion was intro-
duced in [53] as diffusion-generated motion, and has now been generalized to forms known
as convolution-generated motion or threshold dynamics. This method splits the reaction–
diffusion approach into two highly simplified steps. Remarkably, a vector-valued general-
ization of this approach, as in the vector-valued level set method described above, gives an
alternative way [74] to easily compute the motion (and merging) of curves moving normal
to themselves in three dimensions with velocity equal to their curvature.

2.2. Dynamic Surface Extension (DSE)

Another fixed grid method for capturing the motion of self-intersecting interfaces was
obtained in [73]. This is a fixed grid, interface-capturing formulation based on the dynamic
surface extension (DSE) method of Steinhoffet al. [82]. The latter method was devised as
an alternative to the level set method of Osher and Sethian [64] which is needed to evolve
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wavefronts according to geometric optics. The problem is that the wavefronts in this case
are supposed to pass through each other—not merge as in the viscosity solution case. Ray-
tracing can be used but the markers tend to diverge, which leads to loss of resolution and
aliasing.

The original (ingenious) DSE method was not well suited to certain fundamental self-
intersection problems such as formation of swallowtails. In [73] we extended the basic DSE
scheme to handle this fundamental problem, as well as all other complex intersections.

The method is designed to track moving sets0 of points of arbitrary (perhaps changing)
codimension; moreover there is no concept of “inside” or “outside.” The method is, in some
sense, dual to the level set method. In the latter, the distance representation is constant
tangential to a surface. In the DSE method, the closest point to a surface is constant in
directions orthogonal to the surface.

The version of DSE presented in [73] can be described as follows:
For each point inRn, set the tracked point TP(x) equal to CP(x), the closest point (tox)

on the initial surface00. SetN equal to the surface normal at the tracked point TP(x). Let
v(TP(x)) be the velocity of the tracked point.

Repeat for all steps:

1. Evolve the tracked point TP(x) according to the local dynamics TP(x)t = v(TP(x)).
2. Extend the surface representation by resetting each tracked point TP(x) equal to the

true closest point CP(x) on the updated surface0, where0 is defined to be the locus of all
tracked points; i.e.,0 = {TP(x) | xεRn}.

Replace eachN(x) by the normal at the updated TP(x).

This method treats self-intersection by letting moving sets pass through each other. This
is one of its main virtues in the ray-tracing case. However, it has other virtues—namely the
generality of the moving set—and curves can end or change dimension.

An important extension is motivated by considering first arrival times. This enables us
to easily compute swallowtails, for example, and other singular points. We actually use a
combination of distance and direction of motion. One interesting choice arises when nodal
values of TP(x) are set equal to the “minimizing point”

MP(x) = min
y ε Interface

β|(x− y) · N⊥(y)| + ‖x− y‖2

for β > 0 (rather than CP(x)), since a good agreement with the minimal arrival time repre-
sentation is found near the surface. Recall that the minimal arrival time at a pointx is the
shortest time it takes a ray emanating from the surface to reachx. Using this idea gives a
very uniform approximation and naturally treats the prototype swallowtail problem.

For the special case of curvature-dependent motion we may use an elegant observation
of DeGiorgi [28]. Namely the vector mean curvature for a surface of arbitrary codimension
is given byκN = −1∇(d2/2) whereκ is the local mean curvature andd is the distance to
the surface. Using the elementary, but basic fact that

d∇d = x− CP(x),

where CP(x) is the closest point tox on the surface, we obtain a very simple expression for
vector mean curvature:

κN = −1(x− CP(x)) = 1CP(x).
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Thus motion by a functionF , of mean curvature for surfaces of arbitrary codimension can
be achieved by usingv(TP(x)) = 1CP(x). Then curvature-dependent velocities are possible
by using

v = F(1CP(x)|TP(x) · N)N.
Numerical experiments in [73] have validated these algorithms to some degree.

A variety of interesting topics for future research are still open. In particular, adjustments
need to be made if merging is desired. Moreover we can move objects with more complex
topology and geometry, such as surfaces with boundaries (or curves with endpoints), objects
of composite topology (such as a filament attached to a sheet), and surfaces on curves with
triple point junctions (see [53, 88] and Section 5 of this paper for successful level-set-based
and diffusion-generated–based approaches for the codimension one case).

Further work in the area of curvature-dependent motions is also possible. Computationally
the construction of fast extension methods and localization as in [66] for the level set method
would be of great practical importance. It would be particularly interesting to determine if
surfaces fatten (or develop interiors) when mergers occur. See [9] for a detailed discussion
of this phenomenon.

Additionally, in [73], we successfully calculated a geometric optics expansion by retaining
the wave-front curvature. Thus this method has the possibility of being quite useful in
electromagnetic calculations. We hope to investigate its three-dimensional performance
and include the effects of diffraction.

2.3. A Class of Fast Hamilton–Jacobi Solvers

Another important set of numerical algorithms involves the fast solution of steady (time-
independent) Hamilton–Jacobi equations. We also seek methods which are faster than the
globally defined schemes originally used to solve Eq. (2). The level set method of Osher and
Sethian [64] for time-dependent problems can be localized. This means that the problem

ϕt + v · ∇ϕ = 0

with 0(t) = {x | ϕ(x, t) = 0} as the evolving front, can be solved locally near0(t). Several
algorithms exist for doing this; see [2, 66]. These both report anO(N) algorithm where
N is the total number of grid points on or near the front. However, the algorithm in [66]
hasO(N log(N)) complexity because a partial-differential-equation-based reinitialization
step requires log( 1

1x ) ≈ log(N) steps to converge (we are grateful to Bjorn Engquist for
pointing this out). The algorithm in [2] claimsO(N) complexity, but this is not borne out
by the numerical evidence presented there.

However, for some special Hamilton–Jacobi equations, there is a fast method whose
formal complexity isO(N log(N)), but which, in our experience, is around one order of
magnitude faster than these general local methods.

The idea is as follows:
For an equation of the form

H̃(x,∇ψ) = 0,

givenψ = 0 on a noncharacteristic setS,

∇ψ · H̃∇ψ 6= 0,
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FIG. 3. Three-dimensional etching using a fast algorithm. Reprinted from [61].

we proved in [63] that thet level set

{x | ψ(x) = t} = 0′(t)

is the same as the zero level set0(t) of ϕ(x, t), for t > 0, whereϕ satisfies

H̃
(

x,−∇ϕ
ϕt

)
= 0.

This means that the viscosity solutions of both problems have level sets which correspond
to each other. (This was also suggested in the original level set paper of Osher and Sethian
[64].) Thus, one would like to find0(t), the zero level set ofϕ(x, t), as0′(t), thet level set
of ψ(x).
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FIG. 4. Three-dimensional etching using a fast algorithm. Reprinted from [61].

A canonical example is the eikonal equation

ϕt + c(x)|∇ϕ| = 0, c(x) < 0,

which can be replaced by

|∇ψ | = − 1

c(x)
= a(x) > 0.

So we find first arrival times instead of zero level sets.
In [86] J. N. Tsitsiklis devised a fast algorithm for the eikonal equation. He obtained

the viscosity solution using ideas involving Dijkstra’s algorithm, adapted to the eikonal
equation, heap sort, and control theory. From a numerical PDE point of view, however,
Tsitsiklis had an apparently nonstandard approximation to|∇ψ | on a uniform Cartesian
grid.

In (1995) Sethian [76] and Helmsenet al.[40] independently published what appeared to
be a simpler algorithm making use of the Rouy–Tourin algorithm to approximate|∇ϕ|. This
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has become known as the “fast marching method.” However, together with Helmsen [61],
we have proven that Tsitsiklis’s approximation is the usual Rouy–Tourin [69] version of
Godunov’s monotone upwind scheme. That is, the algorithm in [40, 76] is simply Tsitsiklis’s
algorithm with a different (simpler) exposition.

Our goal here is to extend the applicability of this idea from the eikonal equation
to any geometrically based Hamiltonian. By this we mean a Hamiltonian satisfying the
properties

H(x,∇ψ) > 0, if ∇ψ 6= 0 (4)

and

H(x,∇ψ) is homogeneous of degree one in∇ψ. (5)

We wish to obtain a fast algorithm to approximate the viscosity solution of

H̃(x,∇ψ) = H(x,∇ψ)− a(x) = 0. (6)

The first step is to set up a monotone upwind scheme to approximate this problem.
Such a scheme is based on the idea of Godunov used in the approximation of conserva-
tion laws. In Bardi and Osher [7; see also 65], the following was obtained (for simplicity
we exemplify using two space dimensions and ignore the explicitx dependence in the
Hamiltonian),

H(ψx, ψy) ≈ HG(Dx
+ψ, Dx

−ψ j ; Dy
+ψ, Dy

−ψ)

= extu ε I (u− ,U+)extv ε I (v− ,v+) H(u, v),

where

I (a, b) = [min(a, b),max(a, b)]

extu I (a, b) =
{

mina≤u≤b if a ≤ b

maxb≤u≤a if a > b

u± = Dx
±ψi j = ± (ψi±1, j − ψi j )

1x
, v± = Dy

±ψi j = ± (ψi, j±1− ψi j )

1y
.

(Note that the order may be reversed in the ext operations above—we always obtain a
monotone upwind scheme which is often, but not always, order invariant [65].)

This is a monotone upwind scheme which is obtained through the Godunov procedure
involving Riemann problems, extended to general Hamilton– Jacob equations [7, 65].

If we approximate

H(∇ϕ) = a(x, y)

by

HG(D+xϕ, D−xϕ; D+xψ; D+yψ, D−yψ) (7)
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for Hamiltonians satisfying (4), (5) above, then there exists a unique solution forψi, j in
terms ofψi±1, j , ψi, j±1, andψi, j . Furthermoreψi, j is a nondecreasing function of all these
variables.

However, the fast algorithim needs to have propertyF : The solution to (7) depends on
the neighboringψµ,ν only forψµ,ν < ψi, j . This gives us a hint as to how to proceed.

For special Hamiltonians of the formH(u, v) = F(u2, v2), with F nondecreasing in
these variables, we have the result [61]

HG(u+, u−; v+, v−) = F(max((u−+)
2, (u+−)

2);max((v−+)
2, (v+−)

2)), (8)

wherex+ = max(x, 0), x− = min(x, 0). It is easy to see that this numerical Hamiltonian
has the propertyF described above. This formula, as well as the one obtained in Eq. 10
below, enables us to extend the fast marching method algorithm to a much wider class than
before. For example, using this observation we were able to solve an etching problem, also
considered in [3], where the authors did not use a fast marching method algorithm, but
instead used a local narrow band approach and schemes devised in [64]. The Hamiltonian
was

H(ϕx, ϕy, ϕz) =
√
ϕ2

z

(
1+ (4(ϕ2

x + ϕ2
y

))/(
ϕ2

x + ϕ2
y + ϕ2

z

))
.

We are able to use the same heap-sort technology as for the eikonal equation for problems
of this type. See Figs. 3 and 4. These Figures represent the level contours of an etching
process whose normal velocity is a function of the direction of the normal. The process
moves down in Fig. 3 and up in Fig. 4.

More generally, forH(u, v) having the property

uH1 ≥ 0, vH2 ≥ 0, (9)

we also proved [61]

HG(u+, u−; v+, v−) = max[H(u−+, v
−
+), H(u+−, v

−
+), H(u−+, v

+
−), H(u+−, v

+
−)], (10)

and propertyF is again satisfied.
Again in [61], we were able to solve a somewhat interesting and very anisotropic etching

problem with this new fast algorithm. Here we took

H(ϕx, ϕy) = |ϕy|
(
1− a(ϕy)ϕy/

(
ϕ2

x + ϕ2
y

))
,

where

a = 0 if ϕy < 0
a = .8 if ϕy > 0

and observed merging of two fronts. See Figs. 5 and 6. These figures show a two-dimensional
etching process resulting in a merger.

The fast method originating in [86] is a variant of Dijkstra’s algorithm and as such involves
the tree-like heap-sort algorithm to compute the smallest of a set of numbers. Recently Bou´e
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FIG. 5. Two-dimensional etching with merging using a fast algorithm. Reprinted from [61].

and Dupuis [11] have proposed an extremely simple fast algorithm for a class of convex
Hamiltonians including those which satisfy (4) and (5) above. Basically, their statement
is that the standard Gauss–Seidel algorithm, with a simple ordering, converges in afinite
number of iterations for Eq. (7). This would give anO(N), not O(N log N) operations,
with an extremely simple-to-program algorithm—no heap sort is needed. Moreover, for the
eikonal equation witha(x, y) = 1, the algorithm would seem to converge in 2dN iterations
in Rd, d = 1, 2, 3, which is quite fast. This gives a very simple and fast redistancing al-
gorithm. For more complicated problems we have found more-iterations to be necessary,
but have still obtained promising results, together with some theoretical justification. See
[85] for details, which also include results for a number of nonconvex Hamiltonians. We
call this technique the “fast sweeping method” in [85]. We refer to it in Section 3 when we
discuss the basic distance reinitialization algorithm.

3. LEVEL SET DICTIONARY, TECHNOLOGY, AND NUMERICAL IMPLEMENTATION

We list key terms and define them by their level set representation.

1. The interface boundary0(t) is defined by{x | ϕ(x, t) = 0}. The regionÄ(t) is
bounded by0(t) : {x | ϕ(x, t) > 0} and its exterior is defined by{x | ϕ(x, t) < 0}.

2. The unit normalN to 0(t) is given by

N = − ∇ϕ|∇ϕ| .
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FIG. 6. Two-dimensional etching with merging using a fast algorithm. Reprinted from [61].

3. The mean curvatureκ of 0(t) is defined by

κ = −∇ ·
( ∇ϕ
|∇ϕ|

)
.

4. The Dirac delta function concentrated on an interface is

δ(ϕ)|∇ϕ|,

whereδ(x) is a one-dimensional delta function.
5. The characteristic functionχ of a regionÄ(t) is

χ = H(ϕ),

where

H(x) ≡ 1 if x > 0
H(x) ≡ 0 if x < 0

is a one-dimensional Heaviside function.
6. The surface (or line) integral of a quantityp(x, t) over0 is∫

Rn

p(x, t)δ(ϕ)|∇ϕ| dx.



476 OSHER AND FEDKIW

FIG. 7. Two-phase compressible flow calculated with the ghost fluid method. Air on the left and water on the
right. Reprinted from [32].

7. The volume (or area) integral ofp(x, t) overÄ is∫
Rn

p(x, t)H(ϕ) dx.

Next we describe three key technological advances which are important in many, if not
most, level set calculations.

8. The distance reinitialization procedure replaces a general level set functionϕ(x, t)
by d(x, t) which is the value of the distance fromx to 0(t), positive outside and negative
inside. This assures us thatϕ does not become too flat or too steep near0(t). Let d(x, t) be
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FIG. 8. Mach 1.22 air shock collapse of a helium bubble. Reprinted from [32].

signed distance ofx to the closest point on0. The quantityd(x, t) satisfies|∇d| = 1, d > 0
in Ä, d < 0 in (Ǟ)c, and is the steady state solution (asτ →∞) to

∂ψ

∂τ
+ sgn(ϕ)(|∇ψ | − 1) = 0

ψ(x, 0) = ϕ(x, t),
(11)

where sgn(x) = 2H(x)− 1 is the one-dimensional signum function. This procedure was
designed in [84]. The key observation is that in order to defined in a band of widthε
around0, we need solve (11) only forτ = O(ε). It can easily be shown that this can
be used globally to construct distance (with arbitrary accuracy) inO(N log N) iterations
[66]. Alternatively, we may use Tsitsiklis’s fast algorithm [86], which is alsoO(N log N),
with a much smaller constant, but which is only first-order accurate. A locally second-
order accurate (in the high-resolution sense) fast marching method was proposed in [77].
While this method has a much lower local truncation error than a purely first-order accurate
method, it is still globally, first-order accurate except for special cases. Finally, we might
also use the fast sweeping method from [11, 85] as described in the last section, which
appears to haveO(N) complexity and which is also only first-order accurate, although this
complexity estimate has not been rigorously justified.
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FIG. 9. Nonsmeared detonation wave traveling away from a solid wall. Reprinted from [33].

9. Smooth extension of a quantity, e.g.,vn on0 to a neighborhood of0. Let the quantity
be p(x, t). Solve to steady state(τ →∞)

∂q

∂τ
+ sgn(ϕ)

( ∇ϕ
|∇ϕ| · ∇q

)
= 0

q(x, 0) = p(x, t).

Again, we need only solve this forτ = O(ε) in order to extendp to be constant in the
direction normal to the interface in a tube of widthε. This was first suggested and imple-
mented in [24], analyzed carefully in [88], and further discussed and implemented in both
[32], and [66]. A computationally efficient algorithm based on heap sort technology and
fast marching methods was devised in [1]. There are many reasons to extend a quantity
off of 0, one of which is to obtain a well-conditioned normal velocity for level contours
of ϕ close toϕ = 0 [24]. Others involve implementation of the ghost fluid method of [32]
discussed in the next section.

10. The basic level set method concerns a functionϕ(x, t) which is defined throughout
space. Clearly this is wasteful if one only cares about information near the zero level set.
The local level set method definesϕ only near the zero level set. We may solve (2) in
a neighborhood of0 of width m1x, wherem is typically 5 or 6. Points outside of this
neighborhood need not be updated by this motion. This algorithm works in “ϕ” space—so
not too much intricate computer science is used. For details see [66]. Thus this local method
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FIG. 10. Two deflagration fronts depicted shortly after merging. Reprinted from [33].

works easily in the presence of topological changes and for multiphase flow. An earlier local
level set approach called “narrow banding” was devised in [2].

Finally, we repeat that, in the important special case wherevN in Eq. 2 is a function only
of x, t , and∇ϕ (e.g.,vN = 1), Eq. 2 becomes a Hamilton–Jacobi equation whose solutions
generally develop kinks ( jumps in derivatives). We seek the unique viscosity solution. Many
good references exist for this important subject; see, e.g., [8, 27]. The appearance of these
singularities in the solution means that special, but not terribly complicated, numerical
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FIG. 11. Two spatial dimensions,∇ · ( 1
ρ
∇ p) = f (x, y), [ p] = g(x, y), [ 1

ρ
∇ p · N] = h(x, y). Reprinted

from [49].

methods have to be used, usually on uniform Cartesian grids. This was first discussed in
[64] and numerical schemes developed there were generalized in [43, 65]. The key ideas
involve monotonicity, upwind differencing, essentially nonoscillatory (ENO) schemes, and
weighted essentially nonoscillatory (WENO) schemes. See [43, 64, 65] for more details.

4. COUPLING OF THE LEVEL SET METHOD WITH EXTERNAL PHYSICS

Interface problems involving external physics arise in various areas of science. The
computation of such problems has a very long history. Methods of choice include front
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FIG. 12. Water waves generated by the impact of an (invisible) solid object. Reprinted from [44].

tracking—see, e.g., [41, 87]; phase-field methods—see, e.g., [48, 59]; and the volume of
fluid (VOF) approach—see, e.g., [12, 60]. The level set method has had major successes
in this area. Much of the level set technology discussed in the previous two sections was
developed with such applications in mind.

Here, we shall describe level set approaches to problems in compressible flow, incom-
pressible flow, flows having singular vorticity, Stefan problems, kinetic crystal growth, and
a relatively new island dynamics model for epitaxial growth of thin films. We shall also
discuss a recently developed technique, the ghost fluid method (GFM), which can be used
(1) to remove numerical smearing and unphysical oscillations in flow variables near the
interface and (2) to simplify the numerical linear algebra arising in some of the problems
in this section and elsewhere.

4.1. Compressible Flow

Chronologically, the first attempt to use the level set method in this area came in two-
phase inviscid compressible flow [55]. There, to the equations of conservation of mass,
momentum, and energy, we appended Eq. (1), which we rewrote in conservation form as

(ρϕ)t +∇ · (ρϕv) = 0 (12)

using the density of the fluidρ.
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FIG. 13. Two-phase incompressible flames depicted shortly after merging (two spatial dimensions). Reprinted
from [57].

FIG. 14. Two-phase incompressible flames depicted shortly after merging (three spatial dimensions).
Reprinted from [57].
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The sign ofϕ is used to identify which gas occupied which region, so it determines the
local equation of state. This (naive) method suffered from spurious pressure oscillations at
the interface, as shown in [45, 46]. These papers proposed a new method which reduced
these errors using a nonconservative formulation near the interface. However, [45, 46]
still smear out the density across the interface, leading to terminal oscillations for many
equations of state.

A major breakthrough in this area came in the development of the ghost fluid method
(GFM) in [32]. This enables us to couple the level set representation of discontinuities to
finite difference calculations of compressible flows. The approach was based on using the
jump relations for discontinuities which are tracked using Eq. (1) (for two-phase compress-
ible flow). What the method amounts to (in any number of space dimensions) is to populate
cells next to the interface with “ghost values,” which, for two-phase compressible flow, retain
their usual values of pressure and normal velocity (quantities which are continuous across the
interface), with extrapolated values of entropy and tangential velocity (which jump across
the interface). These quantities are used in the numerical flux when “crossing” an interface.

An important aspect of the method is its simplicity. There is no need to solve a Riemann
problem normal to the interface, to consider the Rankine–Hugoniot jump conditions, or
solve an initial–boundary value problem. Another important aspect is its generality. The
philosophy appears to be as follows: At a phase boundary, use a finite difference scheme
which takes only values which are continuous across the interface, using the natural values
whenever possible. Of course, this implies that the tangential velocity is treated in the same
fashion as the normal velocity and the pressure when viscosity is present. The same holds
true for the temperature in the presence of thermal conductivity.

Figure 7 shows results obtained for two-phase compressible flow using the GFM together
with the level set method. Air, with density around 1 kg/m3, is to the left of the interface and
water, with density around 1000 kg/m3, is to the right of the interface. Note that there is no
numerical smearing of the density at the interface itself, which is fortunate, as water cavitates
at a density above 999 kg/m3 leading to a host of unphysical problems near the interface.
Note too, that the pressure and velocity are continuous across the interface, although there
are kinks in both of these quantities. A more complicated multidimensional calculation is
shown in Fig. 8, where a shock wave in air impinges upon a helium droplet. See [32] for
more details.

While the GFM was originally designed for multiphase compressible flow, it can be gen-
eralized to treat a large number of flow discontinuities. In [33], we generalized this method
to treat shocks, detonations, and deflagrations in a fashion that removed the numerical
smearing of the discontinuity. Figure 9 shows the computed solution for a detonation wave.
Note that there is no numerical smearing of the leading wave front, which is extremely im-
portant in the elimination of spurious wave speeds for stiff source terms on coarse grids, as
first pointed out by [26]. While shocks and detonations have associated Riemann problems,
the Riemann problem for a compressible-flow deflagration discontinuity is not well posed
unless the speed of the deflagration is given. Luckily, there is a large amount of literature
on the G-equation for flame discontinuities, which was originally proposed in [50]. The
G-equation represents the flame front as a discontinuity in the same fashion as the level set
method so that one can easily consult the abundant literature on the G-equation to obtain
deflagration speeds for the GFM. Figure 10 shows two initially circular deflagration fronts
that have just recently merged together. Note that the light-colored region surrounding the
deflagration fronts is a precursor shock wave that causes the initially circular deflagration
waves to deform as they attempt to merge.
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The GFM was extended in [34] in order to treat the two-phase compressible viscous
Navier–Stokes equations in a manner that allows a large jump in viscosity across the inter-
face. This paper spawned the technology needed to extend the GFM to multiphase incom-
pressible flow including the effects of viscosity, surface tension, and gravity, as discussed
in the next section.

4.2. Incompressible Flow

The earliest real success in coupling the level set method to problems involving external
physics came in computing two-phase Navier–Stokes incompressible flow [22, 84]. The
equations can be written as

ut + u · ∇u+ ∇ p

ρ
= g+ ∇ · (2µD)

ρ
+ δ(ϕ)σκN

ρ

∇ · u = 0,

whereu = (u, v, w) is the fluid velocity,p is the pressure,ρ = ρ(ϕ), andµ = µ(ϕ) are
the piecewise constant fluid densities and viscosities,g is the gravitational force,D is the
viscous stress tensor,σ is the surface tension coefficient,κ is the curvature of the interface,
N is the unit normal, andδ(ϕ) is a delta function. See [12, 87] for earlier front tracking and
VOF methods (respectively) using a similar formulation. This equation is coupled to the
front motion through the level set evolution equation (1) withv = u. This involves defining
the interface numerically as having a finite width of approximately three to five grid cells.
Within this smeared-out band, the density, viscosity, and pressure are modeled as continuous
functions. Then theσκN/ρ term is used to approximate the surface tension forces which
are lost when using a continuous pressure [84]. Successful computations using this model
were performed in [22, 84]. Problems involving area loss were observed and significant
improvements were made in [83].

As mentioned above, the technology from [34] motivated the extension of the ghost fluid
method to this two-phase incompressible-flow problem. First, a new boundary-condition-
capturing approach was devised and applied to the variable coefficient Poisson equation to
solve problems of the form

∇
(

1

ρ
∇ p

)
= f,

where the jump conditions [p] = g and [1
ρ
∇ p · N] = h are given andρ is discontinuous

across the interface. This was accomplished in [49]. A sample calculation from [49] is
shown in Fig. 11, where one can see that both the solution,p, and its first derivatives
are sharp across the interface without numerical smearing. Next, this new technique was
applied to multiphase incompressible flow in [44]. Here, since one can model the jumps
in pressure directly, there is no need to add theσκN/ρ source term to the right-hand side
of the momentum equation in order to capture the surface tension forces. Instead surface
tension is modeled directly by imposing a pressure jump across the interface. In addition,
[44] allows exact jumps in bothρ andµ so that the nonphysical finite width smeared-out
interface in [84] can be replaced by a sharp interface. A three-dimensional calculation of
an (invisible) solid sphere impacting water and causing a splash is shown in Fig. 12. Here
the air has density near 1 kg/m3 while the water has density near 1000 kg/m3.
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Recently, in [57], this boundary-condition-capturing technology was extended to treat
two-phase incompressible flames where the normal velocity is discontinuous across the in-
terface as well. Figure 13 shows an example calculation where two flames have just merged.
Note that the velocity vectors in Fig. 13 clearly indicate that the velocity is kept discon-
tinuous across the flame front. Two-phase incompressible flames were considered in [39],
as well, and a method was proposed that keeps the interface sharp and removes numerical
smearing. Unfortunately, the method proposed in [39] cannot treat topological changes in
the flame front. Our method improves upon [39], allowing flame-front discontinuities to
merge, as in Fig. 13, or pinch off. Figure 14 shows two flame fronts shortly after merging
in three spatial dimensions.

4.3. Topological Regularization

In [37, 38], it is shown that the level set formulation provides a novel way to regularize
certain ill-posed equations of interface motion by blocking interface self-intersection. We
computed two- and three-dimensional unstable vortex motion without regularization other
than that in the discrete approximation toδ(ϕ)—this is done over a few grid points. The
key observation is that viewing a curve or surface as the level set of a function, and then
evolving it with a perhaps unstable velocity field, prevents certain types of blow-up from
occuring. This is denoted as “topological regularization.” For example, a tracked curve can
develop a figure eight pattern, but a level-set-captured curve will pinch off and stabilize
before this happens. For the setup (involving two functions), see [37], where we perform
calculations involving the Cauchy–Riemann equations. The motions agree until pinch off,
when the topological stabilization develops.

As an example, we considered the two-dimensional incompressible Euler equations,
which may be written as

ωt + u · ∇ω = 0

∇ × u = ω

∇ · u = 0.

We are interested in situations in which the vorticity is initially concentrated on a set
characterized by the level set functionϕ as follows:

vortex parth:ω = H(ϕ)

vortex sheet:ω = δ(ϕ),

(
strength of sheet is

1

|∇ϕ|
)

vortex sheet dipole:ω = d

dϕ
δ(ϕ)= δ′(ϕ).

The key observation is thatϕ also satisfies a simple advection equation andu andω can be
easily recovered. For example, for the vortex sheet case we solve

ϕt + u · ∇ϕ = 0

u =
(−∂y

∂x

)
1−1δ(ϕ).
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Standard Laplace solvers may be used. See [38] for results involving two- and three-
dimensional flows. In [66] we added reinitialization and extension to this procedure and
obtained improved results in the two-dimensional case.

4.4. Stefan Problem

Another classical field concerns Stefan problems [24]; see also [78] for an earlier, but
much more involved level-set-based approach. Here we wish to simulate melting ice or
freezing water, or more complicated crystalline growth, as in the island dynamics model
discussed below.

We begin with a simplified, nondimensionalized model (see [47] for an extension as
mentioned below),

∂T

∂t
= ∇2T, x ε/ ∂Ä = 0(t)

vN = [∇T · N], x ε 0(t),

where [·] denotes the jump across the boundary, and

T =−ε̄cκ(1− Acos(κAθ + θ0))+ ε̄vvn(1− Acos(κAθ + θ0))

on0(t) and whereκ is the curvature,θ = cos−1 ϕx/|∇ϕ/|, and the constantsA, κA, θ0, ε̄c

andε̄v depend on the material being modeled.
We directly discretize the boundary conditions at0: To updateT at grid nodes near the

boundary, if the stencil for the heat equation would cross0 (as indicated by nodal sign
change inϕ), we merely use dimension by dimension one-sided interpolation and the given
boundaryT value at an imaginary node placed atϕ = 0 (found by interpolation onϕ) to
computeTxx and/orTyy (never interpolating across the interface), rather than the usual
three-point central stencils. The level set functionϕ is updated and then reinitialized to
be equal to the signed distance to0. Note that the level set update usesvN that has been
extended off the interface. See [24] for details.

We note that one can easily extend this to

∂T

∂t
=∇ · (κ∇T),

whereκ is a different positive constant inside and outside ofÄ and

vN= [κ∇T · N], x ε 0(t),

as was recently done in [47].
An important observation is that our finite differencing at the interface leads to a non-

symmetric matrix inversion when implicit discretization in time, is applied, although the
method does have nice properties such as second-order accuracy and a maximum principle.
This lack of symmetry is a bit problematic for a fast implementation, especially for very
large values ofκ. Fortunately, an extension of GFM can be used to derive a different spatial
discretization, producing a symmetric matrix that can be inverted rather easily using fast
methods. This was originally proposed by Fedkiw [31] and is described below.
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It is sufficient to explain how the spatial derivatives are derived with respect to one
variable, since there are no mixed partial derivative terms. Suppose the interface point,xf ,
falls in between two grid pointsxi andxi+1. Fromφ, the distances betweenxi , xi+1, andxf

can be estimated by

xf − xi ≈ (−φi 1x)/(φi+1− φi ) = θ11x (13)

xi+1− xf ≈ (−φi+11x)/(φi+1− φi ) = θ21x. (14)

To avoid numerical errors caused by division by 0, θ1 or θ2 are not used if either is less than
1x2. If θ1 < 1x2, thenxf is assumed equal toxi . If θ2 < 1x2, thenxf is assumed equal to
xi+1. Either assumption is effectively a second-order perturbation of the interface location
leading to second-order accurate spatial discretization. The nonsymmetric second-order
accurate discretization forTxx given in [24] is

(Txx)i ≈
((

Tf − Ti

θ11x

)
−
(

Ti − Ti−1

1x

))/
1

2
(θ11x +1x) (15)

(Txx)i+1 ≈
((

Ti+2− Ti+1

1x

)
−
(

Ti+1− Tf

θ21x

))/
1

2
(1x + θ21x), (16)

whereTf denotes the value ofT atxf and is determined from the boundary condition. Instead
of using the nonsymmetric equations (15) and (16), Fedkiw [31] proposed using

(Txx)i ≈
(

Tf − Ti

θ11x
− Ti − Ti−1

1x

)/
1x (17)

(Txx)i+1 ≈
(

Ti+2− Ti+1

1x
− Ti+1− Tf

θ21x

)/
1x, (18)

which leads to a symmetric linear system when using implicit time discretization. Equation
(17) is derived using linear extrapolation ofT from one side of the interface to the other,
obtaining

TG = Tf + (1− θ1)

(
Tf − Ti

θ1

)
(19)

as a ghost cell value forT at xi+1. The standard second-order discretization of∂2T
∂x2 at xi

usingTG at xi+1 is

(Txx)i ≈
(

TG− Ti

1x
− Ti − Ti−1

1x

)/
1x, (20)

and the substitution of Eq. (19) into Eq. (20) leads directly to (17). Equation (18) is derived
similarly.

Formulas (17) and (18) haveO(1) errors using formal truncation error analysis. However,
they are second-order accurate on a problem where the interface has been perturbed by
O(1x2), making them second-order accurate in the interface location. Assume that the
standard second-order accurate discretization is used to obtain the standard linear system of
equations forT at every grid point except for those adjacent to the interface, that is except for
xi andxi+1. Since the linear system of equations for the nodes to the left and includingxi is
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independent of the system for the nodes to the right includingxi+1, only the linear system to
the left is discussed here. Equation (20) is used to write a linear equation forTi introducing
a new unknownTG, and the system is closed with Eq. (19) forTG. In practice, Eqs. (19) and
(20) are combined to obtain Eq. (17) and a symmetric linear system of equations. This linear
system of equations results in well-determined values (up to some prescribed tolerance near
roundoff error levels) ofT at each grid node, as well as a well-determined value ofTG (from
Eq. (19)). For the sake of reference, designateT as the solution vector containing the values
of T at each grid point to the left and includingxi as well as the value ofTG atxi+1which are
obtained by solving this symmetric linear system. Below,T is shown to be a second-order
accurate solution to our problem by showing that it is the second-order accurate solution to
a modified problem where the interface location has been perturbed byO(1x2).

Consider the modified problem where a Dirichlet boundary condition ofT = TG is spec-
ified atxi+1, whereTG is chosen to be the value ofTG from T defined above. This modified
problem can be exactly discretized to second-order accuracy everywhere using the standard
discretization at every node exceptxi , where Eq. (20) is used. We note that Eq. (20) is
the standard second-order accurate discretization when a Dirichlet boundary condition of
T = TG is applied atxi+1. This new linear system can be discretized and solved in a standard
fashion to obtain a second-order accurate solution at each grid node. Then the realization
thatT is an exact solution tothis linear system implies thatT is a second-order accurate
solution to this modified problem. Next consider the interface location dictated by the mod-
ified problem. SinceT is a second-order accurate solution to the modified problem,T can
be used to obtain the interface location to second-order accuracy. The linear interpolant
that usesTi at xi andTG at xi+1 predicts an interface location ofexactly xf , which is the
true interface location. Since higher order interpolants (higher than linear) can contribute
at most anO(1x2) perturbation of the interface location, the interface location dictated by
the modified problem is at most anO(1x2) perturbation of the true interface location,xf .

In [25], we used this strategy to obtain a second-order accurate symmetric discretization
of the variable coefficient Poisson equation.

∇(k∇T) = f

on irregular domains in as many as three spatial dimensions. Then, in a straightforward
way, we obtained second-order accurate symmetric discretizations of the heat equation
on irregular domains using backward Euler time stepping with1t = (1x)2 and Crank–
Nicolson time stepping with1t = 1x.

4.5. Kinetic Crystal Growth

For an initial state consisting of any number of growing crystals inRd, d arbitrary,
moving outward with given normal growth velocityv(N) > 0 which depends on the angle
of the unit surface normalN, the asymptotic growth shape is a single (kinetic) Wulff-
construct crystal. This result was first conjectured by Gross in (1918) [35]. This shape is
also known to minimize the surface integral ofv(N) for a given volume. We gave a proof
of this result [62], see also [81], using the level set formulation and the Hopf–Bellman
formulas [6] for the solution of a Hamilton–Jacobi equation. Additionally, with the help
of the Brunn–Minkowski inequality, we showed that if we evolve a convex surface under
the motion described in (3), then the ratio to be minimized monotonically decreases to
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its minimum as time increases, which provides a new proof that the Wulff construction
solves the generalized isoperimetric problem as well. Thus there is a new link between
this hyperbolic surface evolution and this (generally nonconvex) energy minimization. This
also provides a convenient framework for numerically computing anisotropic kinetic crystal
growth [67]. The theoretical and numerical results of this work are illustrated in the uniform
density island dynamics models of [15, 36]. That model describes crystals growing in two
dimensions with an anisotropic velocity.

An interesting spinoff of this work came in [67], in which we proved that any two-
dimensional Wulff shape can be interpreted precisely as the solution of a Riemann prob-
lem for a scalar conservation law—contact discontinuities correspond to jumps in the an-
gle of the normal to the shape, smoothly varying nonflat faces correspond to rarefaction
waves, and planar facets correspond to constant states, which develop because of kinks in
the conservation law’s flux function. These kinks are also seen in the convexified Wulff
energy.

4.6. Epitaxial Growth of Thin Films

A new continuum model for the epitaxial growth of thin films has been developed.
Molecular beam epitaxy (MBE) is a method for growing extremely thin films of material.
The essential aspects of this growth process are as follows: Under vacuum conditions a
flux of atoms is deposited on a substrate material, typically at a rate that grows one atomic
monolayer every several seconds. When deposition flux atoms hit the surface, they bond
weakly rather than bounce off. These surface “adatoms” are relatively free to hop from
lattice site to lattice site on a flat (atomic) planar surface. However, when they hop to a site
at which there are neighbors at the same level, they form additional bonds which hold them
in place. This bonding could occur at the “step edge” of a partially formed atomic monolayer,
contributing to the growth of that monolayer. Or it could occur when two adatoms collide
with each other. If the critical cluster size is one, the colliding adatoms nucleate a new
partial monolayer “island” that will grow by trapping other adatoms at its step edges.

By these means, the deposited atoms become incorporated into the growing thin film.
Each atomic layer is formed by the nucleation of many isolated monolayer islands, which
then grow in area, merge with nearby islands, and ultimately fill in to complete the layer.
Because the deposition flux is continually raining down on the entire surface, including
the tops of the islands, a new monolayer can start growing before the previous layer is
completely filled. Thus islands can form on top of islands in a “wedding cake” fashion, and
the surface morphology during growth can become quite complicated.

The island dynamics model is a continuum model designed to capture the longer-length-
scale features that are likely to be important for the analysis and control of monolayer thin
film growth. It is also intended to model the physics relevant to studying basic issues of
surface morphology, such as the effects of noise on growth, the long time evolution of
islands, and the scaling relationships between surface features (mean island area, step edge
length, etc.) in various growth regimes (precoalescence, coalescence). Refer to the classic
work of [14] for useful background on the modeling of the growth of material surfaces.
Our present discussion of the island dynamics model is an abridged version of what was
discussed in [54]. We shall present this new model in some detail because, although it has
many of the features of the Stefan problem, it also requires some new level set technology.
This includes a wedding cake formulation involving several level sets of the same function,
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nucleation of new islands, and nontrivial numerical treatment of the interface to obtain rapid
convergence of implicit time marching schemes.

In the island dynamics model, we treat each of the islands present as having a unit height,
but a continuous (step edge) boundary on the surface. This represents the idea that the films
are atomic monolayers, so that height is discrete, but they cover relatively large regions
on the substrate, sox and y are continuum dimensions. The adatoms are modeled by a
continuous adatom density function on the surface. This represents the idea that they are
very mobile, and so they effectively occupy a given site for some fraction of the time, with
statistical continuity, rather than discretely.

Thus, the domain for the model is thex–y region originally defined by the substrate, and
the fundamental dynamical variables for this model are

• The island boundary curves0i (t), i = 1, 2, . . . , N
• The adatom density on the surfaceρ(x, y, t).

The adatom densityρ obeys a surface diffusive transport equation, with a source term for
the deposition flux

∂ρ

∂t
= ∇ · (D∇ρ)+ F,

whereF = F(x, y, t) is specified. During most phases of the growth, it is simply a constant.
This equation may also include additional small loss terms reflecting adatoms lost to the
nucleation of new islands, or lost to de-absorption off the surface. This equation must be
supplemented with boundary conditions at the island boundaries. In the simplest model of
irreversible aggregation, the binding of adatoms to step edges leaves the adatom population
totally depleted near island boundaries, and the boundary condition is

ρ|0 = 0.

More generally, the effects of adatom detachment from boundaries, as well as the energy
barriers present at the boundary, lead to boundary conditions of the form[

Aρ + B
∂ρ

∂n

]
= C,

whereC is given and [·] denotes the local jump across the boundary. In particular, note that
ρ itself can have a jump across the boundary, even though it satisfies a diffusive transport
equation. This simply reflects the fact that the adatoms on top of the island are much more
likely to incorporate into the step edge than to hop across it and mix with the adatoms on
the lower terrace, and vice versa.

The island boundaries0i move with velocitiesv = vNN, where the normal velocityvN

reflects the island growth. This is determined simply by local conservation of atoms: the
total flux of atoms to the boundary from both sides times the effective area per atom,a2

must equal the local rate of growth of the boundary,vN,

vN = −a2[q · N]

(this assumes there is no particle transport along the boundary; more generally, there is a
contribution from this as well), whereq is the surface flux of adatoms to the island boundary
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andN is the local outward normal. In general, the net atom fluxq can be expressed in terms
of the diffusive transport, as well as attachment and detachment probabilities, all of which
can be directly related to the parameters of kinetic Monte Carlo models. In the special case
of irreversible aggregation,q is simply the surface diffusive flux of adatoms

q = −D∇ρ.

To complete the model we include a mechanism for the nucleation of new islands. If
islands nucleate by random binary collisions between adatoms (and if the critical cluster
size is one), we expect the probability that an island is nucleated at a timet , at a site (x, y),
scales as

P[dx, dy, dt] = ερ(x, y, t)2 dt dx dy.

The model describes nucleation as a site-by-site, timestep-by-timestep random process. A
simplifying alternative is to assume the nucleation occurs at the continuous rate obtained
by averaging together the probabilistic rates at each site. In this case, if we letn(t) denote
the total number of islands nucleated prior to timet , we have the deterministic equation

dn

dt
= 〈ερ2〉,

where〈·〉 denotes the spatial average. In this formulation, at each time whenn(t) reaches
a new integer value, we nucleate a new island in space. This is carried out by placing it
randomly on the surface with a probability weighted byρ2, so that the effect of random
binary collisions is retained.

This basic model also has natural extensions to handle more complex thin film models.
For example, additional continuum equations can be added to model the dynamics of the
density of kink sites on the island boundaries, which is a microstructural property that
significantly influences the local adatom attachment rates (see [15]). Also, we can couple
this model to equations for the elastic stress that results from the “lattice mismatch” between
the size of the atoms in the growing layers and the size of the atoms in the substrate.

Conversely, the above model has a particular interesting extreme simplification. We can
go to the limit where the adatoms are so mobile on the surface (D→∞) that the adatom
density is spatially uniform,ρ(x, y, t) = ρ(t). In this case, the loss of adatoms due to the
absorbing boundaries is assumed to take on a limiting form proportional to the adatom
density and the total lengthL of all the island boundaries, which can be written as a simple
sink term

dρ

dt
= F − λLρ.

(This equation can be derived systematically from the conservation law for the total number
of adatoms,

∫
ρ, that follows from the adatom diffusion equation. The above loss term

is just a simplified model for the net loss of adatoms to the island boundaries.) Further,
it is assumed the velocity takes on a given normal-dependent limiting form,vN = vN(N)

(which implies the growing islands will rapidly assume the associated “Wulff shape” for
this functionvN(N) (as in [62])). We have used this “uniform density” model to prototype
the numerical methods and to develop an understanding of how the island dynamics models
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are related to the continuum “rate equation” models that describe island size distribution
evolution while using no information at all about the spatial interactions of the islands.

Much of the above model is formally a Stefan problem and many of the level set techniques
required for this were developed in [24] and can similarly be applied here. In addition,
the internal boundary condition discretization of the adatom diffusion equation can be
implemented using the symmetric matrix version of the discretization proposed by Fedkiw
[31] and discussed above.

5. A VARIATIONAL APPROACH WITH APPLICATIONS TO MULTIPHASE MOTION

In many situations, e.g., crystal growth, a material is composed of three or more phases.
The interfaces between the phases move according to some law. If the material is a metal
and its grain orientation is different in each region, then an isotropic surface energy means
that the velocity is the mean curvature of the interface. Or the velocities of the interfaces
may depend on the pair of phases in contact, e.g., a different constant velocity on each
interface.

Several fixed grid approaches to this problem have been used. Merriman, Bence, and
Osher [53] have extended the level set method to compute the motion of multiple junctions.
Also in that paper, and in [51, 52], a simple method based on the diffusion of characteristic
functions of each setÄi , followed by a certain reassignment step, was shown to be appro-
priate for the motion of multiple junctions in which the bulk energies are zero (and hence,
the constantsei = 0, i = 1, . . . , n) and thefi, j are all equal to the same positive constant,
i.e., pure mean curvature flow. See Eq. (21) below.

Another method using an “influence matrix” was designed in [75]. However, as cautioned
by the author, the method is expensive and complex.

More general motion involving somewhat arbitrary functions of curvature, perhaps dif-
ferent for each interface, was proposed in [53] as well. This was implemented basically
by decoupling the motions and then using a reassignment step. Again each region has its
own private level set function. This function moves each level set with a normal velocity
depending on the proximity to the nearest interface; thus vacuum and overlapping regions
generally develop. Then a simple reassignment step is used, removing all the spurious re-
gions. For details see [53]. In that paper there was no restriction to gradient flows. However,
the general method in [53] lacks (so far) a clean theoretical basis to guide the design of
numerical algorithms. These difficulties were rectified by the following method.

In [88] we developed the variational level set approach inspired by [68]. Given a disjoint
family Äi of regions inR2 with the common boundary betweenÄi andÄ j denoted by0i, j ,
we associate to this geometry an energy function of the form

E = E1+ E2

E1 =
∑

1≤i≤ j≤n

fi, j length(0i, j ) (21)

E2 =
∑

1≤i≤n

ei area(Äi ),

whereE1 is the energy of the interface (surface tension),E2 is bulk energy, andn is the
number of phases. The gradient flow induces motion such that the normal velocity of each
interface is defined in (22). At triple points (which can be seen geometrically by the triangle
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inequality to be the only stable junctions if all thefi, j > 0), the angles are determined by
(23) throughout the motion.

Normal velocity of0i, j = (vN)i, j = fi, j κi, j + (ei − ej ) and (22)

sinθ1

f2,3
= sinθ2

f3,1
= sinθ3

f1,2
. (23)

This could be rewritten as

E = E1+ E2

E1 =
n∑

i=1

γi

∫ ∫
δ(ϕi (x, y, t))|∇ϕi (x, y, t)| dx dy (24)

E2 =
n∑

i=1

ei

∫ ∫
H(ϕi (x, y, t)) dx dy,

where

fi, j = γi + γ j , 1≤ i < j ≤ n.

In the (most interesting) case whenn = 3 we can solve uniquely for theγi .
Now our problem becomes the following:
Minimize E subject to the constraint that

n∑
i=1

H(ϕi (x, y))− 1≡ 0. (25)

This infinite set of constraints prevents the development of overlapping regions and/or
vacuum. It requires that the level curves{(x, y) | ϕi (x, y, t) = 0} match perfectly.

The implementation of (24) with the infinite set of constraints (25) is computationally
demanding. Instead we try to replace the constraint (25) by a single constraint∫ ∫

(
∑

H(ϕi (x, y, t))− 1)2

2
dx dy= ε, (26)

whereε > 0 is as small as we can manage numerically.
The gradient projection method leads us to an interesting coupled system which involves

motion of level contours of eachϕ with normal velocitya+ bκ together with a term
enforcing the no-overlap/vacuum constraint. We find thatε ≈ 1x in real calculations. See
[88] for details.

We have used this technique to reproduce the general behavior of complicated bubble
and droplet motions in two and three dimensions [90]. The problems included soap bubble
colliding and merging drops falling or remaining attached to a generally irregular ceiling
(see Fig. 15), liquid penetrating through an asymmetric funnel opening (see Fig. 16), and
mercury sitting on the floor (see Fig. 17).

This variational approach has also been found to have many applications in computer
vision—this will be discussed in the next section.
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6. APPLICATIONS TO COMPUTER VISION AND IMAGE PROCESSING

The use of PDEs and level set motion in image analysis and computer vision has exploded
in recent years. Good references include [18, 58].

One basic idea is to view an image asu0(x, y), a function defined on a square, and obtain
a (usually second-order) flow equation of the form

ut = F(u, Du, D2u, x, t)
(27)

u(x, y, 0) = u0(x, y),

which, for positivet , processes the image.
For example, if one solves the heat equation withF(u, Du, D2u, x, t) = 1u, then

u(x, y, t) is the same as convolution ofu0 with a Gaussian of variancet .
L. I. Rudin, in his Ph.D. thesis [70], made the point that images are largely characterized

by singularities, edges, boundaries, etc., and thus nonlinearity, especially ideas related to
shock propagation, should play a role. This led to the very successful total variation–based
image restoration algorithms of [71, 72]. Briefly, if we are presented with a noisy blurred
image

u0 = j ∗ u+ n, (28)

where j is a given convolution kernel, and the mean and variance of the noise are given,
we wish to obtain the “best” restored image. This leads us (see [71, 72]) to the evolution
equation

ut = ∇ · ∇u

|∇u| − λ j ∗ ( j ∗ u− u0) (29)

FIG. 15. Three-dimensional drop falling from ceiling. Reprinted from [90].
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FIG. 16. Liquid falling through funnel opening. Reprinted from [90].

FIG. 17. Mercury droplet responding to surface tension. Reprinted from [90].
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to be solved fort > 0, whereu(x, y, 0) is given, andλ(t) > 0 is obtained as a Lagrange
multiplier, or is set to be a fixed constant. Ifj ∗ u = u, this becomes a pure denoising
problem. The (very interesting) geometric interpretation of this procedure is that each level
contour ofu is moved normal to itself with velocity equal to its curvature, divided by the
norm of the gradient ofu, then “pulled back” in an attempt to deconvolve (28). The results
are state-of-the-art for many problems. Noisy regions can be thought of as corresponding to
contours having very high curvature, while edges have finite curvature and infinite gradients.

Here the motion of level sets is just used to interpret the dynamics. In [4], it was shown
that reasonable axioms of image processing lead to the remarkable fact that motion of level
contours by a function of curvature is fundamental to the subject. The artificial timet is
actually the scale parameter [4].

We would like to describe a few new applications of this set of ideas. In [10], we have con-
sidered the problem of processing of images defined on manifolds. The technique actually
can be used to solve a wide class of elliptic equations on manifolds, without triangulation,
using only a local Cartesian grid, for very general situations.

Given a manifold inR3, defined byψ(x, y, z) = 0, we can define the projection matrix

P∇ψ = I − ∇ψ

|∇ψ | ⊗
∇ψ

|∇ψ | . (30)

If u is an image defined onψ = 0 we can use our level set calculus to extend it constant
normal to the manifold, in some neighborhood of the manifold.

If u0 is the original noisy image, the energy to be minimized is

E(u) =
∫

R3
|P∇ψ∇u|δ(ψ)|∇ψ | dx+ λ

2

∫
(u− u0)

2δ(ψ)|∇ψ | dx.

Using the gradient descent algorithm, i.e., following the general procedure of [72, 88], leads
us to

ut = 1

|∇ψ |∇ ·
(

P∇ψ∇u

|P∇ψ∇u| |∇ψ |
)
− λ(u− u0).

This corresponds to total variation denoising. This is done using the local level set method
[66] which allows great flexibility in geometry, while always using a Cartesian grid. See
[10] for denoising and deblurring results.

The technique is quite general—both variational problems and PDEs defined on manifolds
can be solved in a reasonably straightforward fashion, without restrictions on the manifold
and without complicated triangulation, just by using a fixed Cartesian grid.

Another basic image processing task is to detect objects hidden in an imageu0. A popular
technique is called active contours or snakes, in which one evolves a curve, subject to
constraints, until the curve surrounds the image.

The level set method was first used in [16] as a very convenient tool to follow the motion
of active contours in order to surround hidden objects. This was an important step since
topological changes could easily be handled, a variational approach could easily be used
[17], and stable, easy-to-program algorithms resulted. The curve is moved with a velocity
which vanishes when the object is surrounded. Thus edge detectors are traditionally used
to stop the evolving curve. For example, one might use

g(|∇u0|) = (1/(1+ |∇ jσ ∗ u0|))2,

where jσ is a Gaussian of varianceσ .
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FIG. 18. Active contour segmentation of an MRI brain image from its background. Reprinted from [19].

In [20] the authors developed a model which was not based on edges, using a scale
parameter, based on a simplification of the Mumford–Shah [56] energy-based segmentation.
The implementation is done through the variational level set approach [88] and the results
are remarkable. The method has a denoising capability as well as the ability to perform
a multiscale segmentation. See [20, 21] for details. Here we just present the evolution
equation for the level set functionϕ,

ϕt = |∇ϕ|
[
µ∇ · ∇ϕ

|∇ϕ| − ν − λ(u0− c1)
2+ λ(u0− c2)

2

]
,

for parametersµ, ν, λ ≥ 0, wherec1 andc2 are the averages ofu0 over the regions for
whichϕ ≥ 0 andϕ ≤ 0, respectively.ν corresponds to the bulk energy of the area for which
ϕ ≥ 0;µ corresponds to the surface tension of the interface; andλ is the penalty for the
L2 error betweenu0 and its mean over each region. Figure 18 shows an active contour
segmenting a MRI brain image from its background.

A somewhat related problem as discussed in [89] is the following. Given a collection
of unorganized points, and/or curves, and/or surface patches, find a surface which can be
regarded as its shape. This is a fundamental visualization problem which arises in computer
graphics, visualization, and simulation. No assumptions about the ordering, connectivity,
or topology of the data sets or of the true shape are given. The input is the general distance
to the data set which is given on a (usually logically rectangular) grid. Additionally, we may
input the values of the normal to the surface at the same or different data points.

The key idea is to find a functionϕ whose zero level set is the interpolating surface;ϕ

changes sign as one goes from inside to outside the surface. The output is the discrete values
of ϕ, which can be reinitialized to be signed distance to this surface.

We set up a variational problem, which basically minimizes the integral over the unknown
surface, of thepth power of distance to the data set. We may include information about the
normals in analogous fashion.

Gradient descent (as in the image restoration and active contour problems) gives us a
weighted motion by curvature plus convection algorithm. The results are very promising,
as shown in Fig. 19. For more details, see [89].
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FIG. 19. Interpolation of two linked tori. Reprinted from [89].

7. CONCLUSION

The idea of using a level set to represent an interface is a very old one. The level set
method itself has antecedents, for example, in theG-equation approach of Markstein [50].
What is new is the level set method technology, theoretical justification through viscosity
solutions, and the enormous number of wide-ranging applications that are now available,
with new applications developing quite frequently.
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